Edit model card

MT5-small is finetuned with large corups of Nepali Health Question-Answering Dataset.

Training Procedure

The model was trained for 30 epochs with the following training parameters:

  • Learning Rate: 2e-4
  • Batch Size: 2
  • Gradient Accumulation Steps: 8
  • FP16 (mixed-precision training): Disabled
  • Optimizer: AdamW with weight decay

The training loss consistently decreased, indicating successful learning.

Use Case


  !pip install transformers sentencepiece

  from transformers import MT5ForConditionalGeneration, AutoTokenizer 
  # Load the trained model
  model = MT5ForConditionalGeneration.from_pretrained("Chhabi/mt5-small-finetuned-Nepali-Health-50k-2")
  
  # Load the tokenizer for generating new output
  tokenizer = AutoTokenizer.from_pretrained("Chhabi/mt5-small-finetuned-Nepali-Health-50k-2",use_fast=True)


    
  query = "म धेरै थकित महसुस गर्छु र मेरो नाक बगिरहेको छ। साथै, मलाई घाँटी दुखेको छ र अलि टाउको दुखेको छ। मलाई के भइरहेको छ?"
  input_text = f"answer: {query}"
  inputs = tokenizer(input_text,return_tensors='pt',max_length=256,truncation=True).to("cuda")
  print(inputs)
  generated_text = model.generate(**inputs,max_length=512,min_length=256,length_penalty=3.0,num_beams=10,top_p=0.95,top_k=100,do_sample=True,temperature=0.7,num_return_sequences=3,no_repeat_ngram_size=4)
  print(generated_text)
  # generated_text
  generated_response = tokenizer.batch_decode(generated_text,skip_special_tokens=True)[0]
  tokens = generated_response.split(" ")
  filtered_tokens = [token for token in tokens if not token.startswith("<extra_id_")]
  print(' '.join(filtered_tokens))

Evaluation

BLEU score:

image/png

Downloads last month
16
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train Chhabi/mt5-small-finetuned-Nepali-Health-50k-2