Edit model card

OpenELM-1_1B-IPO

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Logits/chosen: -0.6367
  • Logits/rejected: 0.8008
  • Logps/chosen: -49.75
  • Logps/rejected: -62.75
  • Loss: 1943.3600
  • Rewards/accuracies: 0.6953
  • Rewards/chosen: -0.4863
  • Rewards/margins: 0.1309
  • Rewards/rejected: -0.6172

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Logits/chosen Logits/rejected Logps/chosen Logps/rejected Validation Loss Rewards/accuracies Rewards/chosen Rewards/margins Rewards/rejected
2322.6 0.1047 100 -8.875 -8.375 -13.1875 -15.875 2317.6321 0.625 -0.1211 0.0258 -0.1465
2118.6 0.2093 200 -10.125 -9.75 -30.5 -37.25 2150.9761 0.6738 -0.2930 0.0664 -0.3594
2172.1 0.3140 300 -8.4375 -7.8438 -37.0 -44.0 2062.5920 0.6895 -0.3594 0.0674 -0.4277
2039.3 0.4186 400 -6.0938 -5.4375 -28.5 -37.0 1999.0400 0.6914 -0.2734 0.0850 -0.3594
1938.55 0.5233 500 -6.2812 -5.25 -40.0 -51.25 1975.6801 0.6953 -0.3906 0.1113 -0.5
1949.6 0.6279 600 -6.3438 -4.9062 -34.5 -44.0 1962.8800 0.7051 -0.3340 0.0942 -0.4277
1951.75 0.7326 700 -8.6875 -7.0625 -30.625 -41.25 1956.0959 0.7090 -0.2949 0.1055 -0.4004
1869.7 0.8373 800 -1.2031 0.3184 -37.0 -48.75 1889.7280 0.7207 -0.3594 0.1147 -0.4746
1905.45 0.9419 900 -6.0625 -4.2188 -42.5 -54.25 1903.8400 0.7070 -0.4141 0.1167 -0.5312
1301.1 1.0466 1000 -0.8906 0.2236 -40.0 -54.25 1946.8480 0.7109 -0.3887 0.1416 -0.5312
1193.05 1.1512 1100 -1.6094 -0.3926 -45.0 -59.25 1939.2321 0.7031 -0.4395 0.1406 -0.5781
1162.575 1.2559 1200 -2.0938 -0.7109 -45.5 -59.75 1908.4800 0.7070 -0.4434 0.1406 -0.5859
1153.3 1.3605 1300 -2.8281 -1.3594 -41.25 -54.75 1974.0800 0.6973 -0.4004 0.1357 -0.5352
1084.875 1.4652 1400 -1.5078 0.0021 -48.0 -61.5 1926.9440 0.7051 -0.4688 0.1338 -0.6016
1031.2313 1.5699 1500 -1.6641 -0.1064 -42.0 -56.75 1931.5840 0.7031 -0.4082 0.1465 -0.5547
1090.75 1.6745 1600 -1.375 0.0486 -44.25 -58.25 1936.1281 0.6973 -0.4316 0.1396 -0.5703
1097.5375 1.7792 1700 -2.2344 -0.6602 -47.5 -62.0 1975.2960 0.7070 -0.4648 0.1445 -0.6094
1031.15 1.8838 1800 -0.8125 0.4512 -48.0 -62.25 1964.5120 0.7090 -0.4668 0.1416 -0.6094
1012.0125 1.9885 1900 -0.7578 0.6133 -46.25 -60.25 1937.0240 0.7031 -0.4512 0.1406 -0.5898
262.0437 2.0931 2000 -0.875 0.5430 -47.75 -60.75 1950.9440 0.6895 -0.4668 0.1309 -0.5977
266.8375 2.1978 2100 -1.25 0.2207 -47.25 -60.25 1943.8719 0.7090 -0.4609 0.1279 -0.5898
284.8125 2.3025 2200 -0.5508 0.8164 -49.75 -62.75 1946.7520 0.6934 -0.4883 0.1289 -0.6172
303.8625 2.4071 2300 -0.4082 0.9297 -50.25 -63.0 1945.9840 0.6973 -0.4902 0.1279 -0.6172
266.5266 2.5118 2400 -0.6602 0.7578 -49.25 -62.25 1952.0640 0.6914 -0.4805 0.1289 -0.6094
220.4344 2.6164 2500 -0.5625 0.8672 -49.25 -62.25 1944.1281 0.6973 -0.4805 0.1309 -0.6094
253.4812 2.7211 2600 -0.5469 0.8789 -50.0 -63.0 1938.1121 0.6914 -0.4883 0.1299 -0.6172
271.3984 2.8257 2700 -0.6328 0.8047 -49.75 -63.0 1943.8719 0.6953 -0.4863 0.1299 -0.6172
292.8133 2.9304 2800 -0.6367 0.8008 -49.75 -62.75 1943.3600 0.6953 -0.4863 0.1309 -0.6172

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
1.08B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.