OpenELM-1_1B-DPO-full-max-second-reward
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.4829
- Rewards/chosen: -12.4375
- Rewards/rejected: -12.875
- Rewards/accuracies: 0.5371
- Rewards/margins: 0.4414
- Logps/rejected: -1576.0
- Logps/chosen: -1560.0
- Logits/rejected: 10.8125
- Logits/chosen: 8.8125
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6927 | 0.1047 | 100 | 0.6950 | -0.2334 | -0.2539 | 0.5254 | 0.0201 | -314.0 | -342.0 | -13.125 | -13.25 |
0.6759 | 0.2094 | 200 | 0.7065 | -0.6484 | -0.7617 | 0.5488 | 0.1123 | -366.0 | -384.0 | -11.6875 | -11.9375 |
0.6912 | 0.3141 | 300 | 0.7235 | -1.1484 | -1.2344 | 0.5527 | 0.0845 | -412.0 | -434.0 | -14.0 | -14.0625 |
0.7002 | 0.4188 | 400 | 0.7412 | -1.2734 | -1.2578 | 0.4883 | -0.0128 | -414.0 | -446.0 | -13.5 | -13.5 |
0.6819 | 0.5236 | 500 | 0.7542 | -1.75 | -1.7656 | 0.4961 | 0.0173 | -466.0 | -492.0 | -12.125 | -12.3125 |
0.7065 | 0.6283 | 600 | 0.7290 | -1.9297 | -1.9453 | 0.5039 | 0.0159 | -482.0 | -512.0 | -12.1875 | -12.375 |
0.6892 | 0.7330 | 700 | 0.7298 | -2.1094 | -2.1719 | 0.5117 | 0.0518 | -506.0 | -532.0 | -11.75 | -11.8125 |
0.7117 | 0.8377 | 800 | 0.7436 | -2.25 | -2.2812 | 0.4961 | 0.0247 | -516.0 | -544.0 | -8.5625 | -8.875 |
0.6835 | 0.9424 | 900 | 0.7565 | -2.1562 | -2.1875 | 0.5137 | 0.0284 | -508.0 | -536.0 | -7.8125 | -8.1875 |
0.2775 | 1.0471 | 1000 | 0.9428 | -4.0938 | -4.125 | 0.5137 | 0.0229 | -700.0 | -728.0 | -10.75 | -11.1875 |
0.2471 | 1.1518 | 1100 | 0.9772 | -5.6562 | -5.75 | 0.5234 | 0.0986 | -864.0 | -884.0 | -3.9844 | -4.8438 |
0.2465 | 1.2565 | 1200 | 0.9777 | -5.125 | -5.2188 | 0.5254 | 0.0688 | -808.0 | -832.0 | -4.1562 | -5.0312 |
0.2601 | 1.3613 | 1300 | 0.9855 | -6.5 | -6.6875 | 0.5488 | 0.1846 | -956.0 | -968.0 | 0.3164 | -0.7695 |
0.2404 | 1.4660 | 1400 | 0.9077 | -6.8438 | -7.0938 | 0.5293 | 0.2520 | -1000.0 | -1004.0 | 2.0312 | 0.6367 |
0.2371 | 1.5707 | 1500 | 0.9027 | -5.8438 | -6.0625 | 0.5508 | 0.2061 | -896.0 | -904.0 | 1.4141 | 0.0143 |
0.2329 | 1.6754 | 1600 | 0.9480 | -6.7812 | -7.0312 | 0.5488 | 0.2617 | -992.0 | -996.0 | 2.0312 | 0.5664 |
0.231 | 1.7801 | 1700 | 0.8705 | -6.2812 | -6.5625 | 0.5527 | 0.2598 | -944.0 | -948.0 | -1.6484 | -2.7031 |
0.2045 | 1.8848 | 1800 | 0.9315 | -7.4375 | -7.7188 | 0.5625 | 0.3086 | -1064.0 | -1064.0 | -1.3906 | -2.5 |
0.2467 | 1.9895 | 1900 | 0.8831 | -7.0625 | -7.375 | 0.5586 | 0.3145 | -1024.0 | -1024.0 | 0.2656 | -0.9961 |
0.0377 | 2.0942 | 2000 | 1.3504 | -10.6875 | -11.0625 | 0.5371 | 0.3652 | -1392.0 | -1384.0 | 6.25 | 4.5625 |
0.0265 | 2.1990 | 2100 | 1.5050 | -11.5 | -11.8125 | 0.5566 | 0.3320 | -1472.0 | -1472.0 | 8.1875 | 6.375 |
0.0363 | 2.3037 | 2200 | 1.4563 | -11.625 | -11.9375 | 0.5312 | 0.3398 | -1480.0 | -1480.0 | 8.9375 | 7.1562 |
0.0292 | 2.4084 | 2300 | 1.5373 | -12.125 | -12.5 | 0.5449 | 0.3535 | -1536.0 | -1528.0 | 9.6875 | 7.7812 |
0.0491 | 2.5131 | 2400 | 1.4556 | -12.0625 | -12.5 | 0.5410 | 0.4355 | -1536.0 | -1528.0 | 9.8125 | 7.875 |
0.0324 | 2.6178 | 2500 | 1.4875 | -12.5 | -12.9375 | 0.5391 | 0.4414 | -1584.0 | -1568.0 | 10.5 | 8.5625 |
0.0247 | 2.7225 | 2600 | 1.4541 | -12.0625 | -12.5 | 0.5410 | 0.4336 | -1536.0 | -1528.0 | 10.25 | 8.3125 |
0.0335 | 2.8272 | 2700 | 1.4734 | -12.3125 | -12.75 | 0.5371 | 0.4434 | -1568.0 | -1552.0 | 10.6875 | 8.75 |
0.0263 | 2.9319 | 2800 | 1.4829 | -12.4375 | -12.875 | 0.5371 | 0.4414 | -1576.0 | -1560.0 | 10.8125 | 8.8125 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.3.0
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference API (serverless) does not yet support model repos that contain custom code.