whisper-base-ln / README.md
BrainTheos's picture
update model card README.md
a2300a7
metadata
language:
  - ln
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Base Lingala - BrainTheos
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Fleurs
          type: google/fleurs
          config: ln_cd
          split: validation
          args: ln_cd
        metrics:
          - name: Wer
            type: wer
            value: 25.050916496945007

Whisper Base Lingala - BrainTheos

This model is a fine-tuned version of openai/whisper-base on the Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7265
  • Wer: 25.0509

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0081 21.0 1000 0.6218 29.8710
0.0016 42.01 2000 0.6865 25.1188
0.0009 63.01 3000 0.7152 24.9151
0.0007 85.0 4000 0.7265 25.0509

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.1.dev0
  • Tokenizers 0.13.3