newknp's picture
add tag
6fa9656
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
  - cer
model-index:
  - name: wav2vec2-xls-r-300m-th-cv11_0
    results: []
datasets:
  - mozilla-foundation/common_voice_11_0
language:
  - th
pipeline_tag: automatic-speech-recognition

wav2vec2-xls-r-300m-th-cv11_0

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3391
  • Wer: 0.2915
  • Cer: 0.0651
  • Clean Cer: 0.0508
  • Learning Rate: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer Clean Cer Rate
7.5397 0.37 500 3.5716 1.0 0.9811 0.9774 0.0001
1.7478 0.75 1000 0.7702 0.8097 0.2296 0.1746 0.0001
0.7687 1.12 1500 0.4997 0.5392 0.1415 0.1182 0.0001
0.6064 1.5 2000 0.4270 0.4956 0.1238 0.1001 0.0001
0.5473 1.87 2500 0.3809 0.4489 0.1105 0.0898 0.0001
0.454 2.24 3000 0.3585 0.4256 0.1021 0.0813 0.0001
0.4219 2.62 3500 0.3375 0.4063 0.0974 0.0777 0.0001
0.4075 2.99 4000 0.3274 0.4036 0.0948 0.0746 0.0001
0.3355 3.37 4500 0.3257 0.3782 0.0898 0.0729 0.0001
0.3203 3.74 5000 0.3024 0.3561 0.0830 0.0659 0.0001
0.3151 4.11 5500 0.3038 0.3606 0.0830 0.0653 0.0001
0.2713 4.49 6000 0.3052 0.3595 0.0832 0.0655 0.0001
0.2685 4.86 6500 0.2933 0.3436 0.0796 0.0628 0.0001
0.2379 5.24 7000 0.3020 0.3362 0.0763 0.0608 0.0000
0.224 5.61 7500 0.2874 0.3265 0.0745 0.0589 0.0000
0.2204 5.98 8000 0.2922 0.3191 0.0724 0.0576 0.0000
0.1927 6.36 8500 0.3107 0.3163 0.0719 0.0568 0.0000
0.1875 6.73 9000 0.3034 0.3084 0.0703 0.0554 0.0000
0.1786 7.11 9500 0.3210 0.3107 0.0702 0.0553 0.0000
0.1606 7.48 10000 0.3231 0.3062 0.0688 0.0541 0.0000
0.1594 7.85 10500 0.3234 0.3033 0.0680 0.0535 0.0000
0.1498 8.23 11000 0.3276 0.3035 0.0680 0.0530 0.0000
0.1396 8.6 11500 0.3265 0.2975 0.0668 0.0520 0.0000
0.142 8.98 12000 0.3236 0.2930 0.0659 0.0515 0.0000
0.1242 9.35 12500 0.3403 0.2921 0.0655 0.0511 0.0000
0.1225 9.72 13000 0.3391 0.2915 0.0651 0.0508 0.0000

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2