metadata
license: apache-2.0
base_model: Bisher/wav2vec2_ASV_deepfake_audio_detection
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen
results: []
wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen
This model is a fine-tuned version of Bisher/wav2vec2_ASV_deepfake_audio_detection on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4076
- Accuracy: 0.9115
- Precision: 0.9131
- Recall: 0.9115
- F1: 0.8803
- Tp: 265
- Tn: 17893
- Fn: 1742
- Fp: 20
- Eer: 0.0588
- Min Tdcf: 0.0271
- Auc Roc: 0.9849
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 152
- eval_batch_size: 152
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 608
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Tp | Tn | Fn | Fp | Eer | Min Tdcf | Auc Roc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.025 | 0.0490 | 10 | 0.3573 | 0.9139 | 0.9168 | 0.9139 | 0.8847 | 308 | 17896 | 1699 | 17 | 0.0826 | 0.0329 | 0.9732 |
0.0219 | 0.0979 | 20 | 0.3002 | 0.9152 | 0.9172 | 0.9152 | 0.8875 | 339 | 17891 | 1668 | 22 | 0.0757 | 0.0321 | 0.9759 |
0.0193 | 0.1469 | 30 | 0.3557 | 0.9159 | 0.9178 | 0.9159 | 0.8889 | 354 | 17890 | 1653 | 23 | 0.0710 | 0.0320 | 0.9541 |
0.0197 | 0.1958 | 40 | 0.3963 | 0.9191 | 0.9206 | 0.9191 | 0.8951 | 423 | 17885 | 1584 | 28 | 0.0802 | 0.0325 | 0.9453 |
0.0181 | 0.2448 | 50 | 0.3524 | 0.9155 | 0.9176 | 0.9155 | 0.8882 | 346 | 17891 | 1661 | 22 | 0.0673 | 0.0324 | 0.9794 |
0.0152 | 0.2938 | 60 | 0.5161 | 0.9050 | 0.9102 | 0.9050 | 0.8654 | 119 | 17908 | 1888 | 5 | 0.0857 | 0.0314 | 0.9582 |
0.0155 | 0.3427 | 70 | 0.6375 | 0.9037 | 0.9120 | 0.9037 | 0.8622 | 90 | 17912 | 1917 | 1 | 0.1395 | 0.0307 | 0.9384 |
0.0193 | 0.3917 | 80 | 0.3521 | 0.9119 | 0.9153 | 0.9119 | 0.8808 | 267 | 17899 | 1740 | 14 | 0.0643 | 0.0309 | 0.9816 |
0.0158 | 0.4406 | 90 | 0.3775 | 0.9066 | 0.9113 | 0.9066 | 0.8692 | 154 | 17906 | 1853 | 7 | 0.0613 | 0.0290 | 0.9839 |
0.017 | 0.4896 | 100 | 0.4076 | 0.9115 | 0.9131 | 0.9115 | 0.8803 | 265 | 17893 | 1742 | 20 | 0.0588 | 0.0271 | 0.9849 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1