Bisher's picture
Model save
c170167 verified
metadata
license: apache-2.0
base_model: Bisher/wav2vec2_ASV_deepfake_audio_detection
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen
    results: []

wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen

This model is a fine-tuned version of Bisher/wav2vec2_ASV_deepfake_audio_detection on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4076
  • Accuracy: 0.9115
  • Precision: 0.9131
  • Recall: 0.9115
  • F1: 0.8803
  • Tp: 265
  • Tn: 17893
  • Fn: 1742
  • Fp: 20
  • Eer: 0.0588
  • Min Tdcf: 0.0271
  • Auc Roc: 0.9849

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 152
  • eval_batch_size: 152
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 608
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Tp Tn Fn Fp Eer Min Tdcf Auc Roc
0.025 0.0490 10 0.3573 0.9139 0.9168 0.9139 0.8847 308 17896 1699 17 0.0826 0.0329 0.9732
0.0219 0.0979 20 0.3002 0.9152 0.9172 0.9152 0.8875 339 17891 1668 22 0.0757 0.0321 0.9759
0.0193 0.1469 30 0.3557 0.9159 0.9178 0.9159 0.8889 354 17890 1653 23 0.0710 0.0320 0.9541
0.0197 0.1958 40 0.3963 0.9191 0.9206 0.9191 0.8951 423 17885 1584 28 0.0802 0.0325 0.9453
0.0181 0.2448 50 0.3524 0.9155 0.9176 0.9155 0.8882 346 17891 1661 22 0.0673 0.0324 0.9794
0.0152 0.2938 60 0.5161 0.9050 0.9102 0.9050 0.8654 119 17908 1888 5 0.0857 0.0314 0.9582
0.0155 0.3427 70 0.6375 0.9037 0.9120 0.9037 0.8622 90 17912 1917 1 0.1395 0.0307 0.9384
0.0193 0.3917 80 0.3521 0.9119 0.9153 0.9119 0.8808 267 17899 1740 14 0.0643 0.0309 0.9816
0.0158 0.4406 90 0.3775 0.9066 0.9113 0.9066 0.8692 154 17906 1853 7 0.0613 0.0290 0.9839
0.017 0.4896 100 0.4076 0.9115 0.9131 0.9115 0.8803 265 17893 1742 20 0.0588 0.0271 0.9849

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1