metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: deit-base-distilled-patch16-224-hasta-65-fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6388888888888888
deit-base-distilled-patch16-224-hasta-65-fold3
This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7785
- Accuracy: 0.6389
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.5714 | 1 | 1.0782 | 0.3889 |
No log | 1.7143 | 3 | 1.0920 | 0.4444 |
No log | 2.8571 | 5 | 1.1444 | 0.3333 |
No log | 4.0 | 7 | 1.0610 | 0.4444 |
No log | 4.5714 | 8 | 1.0671 | 0.5 |
1.0571 | 5.7143 | 10 | 1.1793 | 0.4444 |
1.0571 | 6.8571 | 12 | 1.0866 | 0.4722 |
1.0571 | 8.0 | 14 | 1.1468 | 0.5 |
1.0571 | 8.5714 | 15 | 1.2370 | 0.4167 |
1.0571 | 9.7143 | 17 | 1.0559 | 0.5 |
1.0571 | 10.8571 | 19 | 0.9752 | 0.5278 |
0.8894 | 12.0 | 21 | 1.0526 | 0.5 |
0.8894 | 12.5714 | 22 | 1.0317 | 0.5556 |
0.8894 | 13.7143 | 24 | 1.0262 | 0.5556 |
0.8894 | 14.8571 | 26 | 0.9769 | 0.4722 |
0.8894 | 16.0 | 28 | 0.9297 | 0.4722 |
0.8894 | 16.5714 | 29 | 0.8848 | 0.5556 |
0.7239 | 17.7143 | 31 | 0.8514 | 0.5833 |
0.7239 | 18.8571 | 33 | 0.8981 | 0.5 |
0.7239 | 20.0 | 35 | 0.9670 | 0.5 |
0.7239 | 20.5714 | 36 | 0.8502 | 0.5556 |
0.7239 | 21.7143 | 38 | 0.7785 | 0.6389 |
0.6094 | 22.8571 | 40 | 0.9256 | 0.5556 |
0.6094 | 24.0 | 42 | 0.9037 | 0.5278 |
0.6094 | 24.5714 | 43 | 0.8753 | 0.5278 |
0.6094 | 25.7143 | 45 | 0.8113 | 0.5556 |
0.6094 | 26.8571 | 47 | 0.9797 | 0.5 |
0.6094 | 28.0 | 49 | 1.0319 | 0.5 |
0.4826 | 28.5714 | 50 | 0.9114 | 0.5 |
0.4826 | 29.7143 | 52 | 0.7637 | 0.6389 |
0.4826 | 30.8571 | 54 | 0.8048 | 0.5556 |
0.4826 | 32.0 | 56 | 0.9822 | 0.5 |
0.4826 | 32.5714 | 57 | 0.9031 | 0.5278 |
0.4826 | 33.7143 | 59 | 0.7211 | 0.5833 |
0.3943 | 34.8571 | 61 | 0.6979 | 0.6111 |
0.3943 | 36.0 | 63 | 0.7324 | 0.6111 |
0.3943 | 36.5714 | 64 | 0.7462 | 0.6389 |
0.3943 | 37.7143 | 66 | 0.7728 | 0.5833 |
0.3943 | 38.8571 | 68 | 0.7530 | 0.6389 |
0.3325 | 40.0 | 70 | 0.7361 | 0.6389 |
0.3325 | 40.5714 | 71 | 0.7227 | 0.6389 |
0.3325 | 41.7143 | 73 | 0.7938 | 0.5833 |
0.3325 | 42.8571 | 75 | 0.8003 | 0.5556 |
0.3325 | 44.0 | 77 | 0.7544 | 0.6389 |
0.3325 | 44.5714 | 78 | 0.7556 | 0.6389 |
0.2911 | 45.7143 | 80 | 0.7858 | 0.5833 |
0.2911 | 46.8571 | 82 | 0.7992 | 0.5556 |
0.2911 | 48.0 | 84 | 0.8293 | 0.6111 |
0.2911 | 48.5714 | 85 | 0.8294 | 0.5833 |
0.2911 | 49.7143 | 87 | 0.8113 | 0.5833 |
0.2911 | 50.8571 | 89 | 0.8062 | 0.5278 |
0.2577 | 52.0 | 91 | 0.8508 | 0.5556 |
0.2577 | 52.5714 | 92 | 0.8744 | 0.5556 |
0.2577 | 53.7143 | 94 | 0.8948 | 0.5556 |
0.2577 | 54.8571 | 96 | 0.8976 | 0.5278 |
0.2577 | 56.0 | 98 | 0.8933 | 0.5278 |
0.2577 | 56.5714 | 99 | 0.8900 | 0.5278 |
0.2642 | 57.1429 | 100 | 0.8886 | 0.5278 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1