BilalMuftuoglu's picture
End of training
3275870 verified
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-hasta-65-fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6388888888888888

deit-base-distilled-patch16-224-hasta-65-fold3

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7785
  • Accuracy: 0.6389

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.5714 1 1.0782 0.3889
No log 1.7143 3 1.0920 0.4444
No log 2.8571 5 1.1444 0.3333
No log 4.0 7 1.0610 0.4444
No log 4.5714 8 1.0671 0.5
1.0571 5.7143 10 1.1793 0.4444
1.0571 6.8571 12 1.0866 0.4722
1.0571 8.0 14 1.1468 0.5
1.0571 8.5714 15 1.2370 0.4167
1.0571 9.7143 17 1.0559 0.5
1.0571 10.8571 19 0.9752 0.5278
0.8894 12.0 21 1.0526 0.5
0.8894 12.5714 22 1.0317 0.5556
0.8894 13.7143 24 1.0262 0.5556
0.8894 14.8571 26 0.9769 0.4722
0.8894 16.0 28 0.9297 0.4722
0.8894 16.5714 29 0.8848 0.5556
0.7239 17.7143 31 0.8514 0.5833
0.7239 18.8571 33 0.8981 0.5
0.7239 20.0 35 0.9670 0.5
0.7239 20.5714 36 0.8502 0.5556
0.7239 21.7143 38 0.7785 0.6389
0.6094 22.8571 40 0.9256 0.5556
0.6094 24.0 42 0.9037 0.5278
0.6094 24.5714 43 0.8753 0.5278
0.6094 25.7143 45 0.8113 0.5556
0.6094 26.8571 47 0.9797 0.5
0.6094 28.0 49 1.0319 0.5
0.4826 28.5714 50 0.9114 0.5
0.4826 29.7143 52 0.7637 0.6389
0.4826 30.8571 54 0.8048 0.5556
0.4826 32.0 56 0.9822 0.5
0.4826 32.5714 57 0.9031 0.5278
0.4826 33.7143 59 0.7211 0.5833
0.3943 34.8571 61 0.6979 0.6111
0.3943 36.0 63 0.7324 0.6111
0.3943 36.5714 64 0.7462 0.6389
0.3943 37.7143 66 0.7728 0.5833
0.3943 38.8571 68 0.7530 0.6389
0.3325 40.0 70 0.7361 0.6389
0.3325 40.5714 71 0.7227 0.6389
0.3325 41.7143 73 0.7938 0.5833
0.3325 42.8571 75 0.8003 0.5556
0.3325 44.0 77 0.7544 0.6389
0.3325 44.5714 78 0.7556 0.6389
0.2911 45.7143 80 0.7858 0.5833
0.2911 46.8571 82 0.7992 0.5556
0.2911 48.0 84 0.8293 0.6111
0.2911 48.5714 85 0.8294 0.5833
0.2911 49.7143 87 0.8113 0.5833
0.2911 50.8571 89 0.8062 0.5278
0.2577 52.0 91 0.8508 0.5556
0.2577 52.5714 92 0.8744 0.5556
0.2577 53.7143 94 0.8948 0.5556
0.2577 54.8571 96 0.8976 0.5278
0.2577 56.0 98 0.8933 0.5278
0.2577 56.5714 99 0.8900 0.5278
0.2642 57.1429 100 0.8886 0.5278

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1