PROF-NER-CAT
Table of contents
Click to expand
Model description
A fine-tuned version of the bsc-bio-ehr-es model on the MEDDOPROF corpus (Catalan Gold Standard Corpus) for professions/jobs (PROFESION) and employment status (SITUACION_LABORAL).
For further information, check the official website.
How to use
⚠ We recommend pre-tokenizing the input text into words instead of providing it directly to the model, as this is how the model was trained. Otherwise, the results and performance might get affected.
A usage example can be found here.
Limitations and bias
At the time of submission, no measures have been taken to estimate the bias embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated.
Training
The model was trained using the Barcelona Supercomputing Center infrastructure.
Evaluation
Micro F1 Score: 0.729 on MEDDOPROF-cat (Catalan Gold Standard)
PROFESION F1 Score: 0.775
SITUACION_LABORAL F1 Score: 0.639
Micro F1 Score: 0.815 on CataCCC-professions (Catalan Gold Standard)
PROFESION F1 Score: 0.863
SITUACION_LABORAL F1 Score: 0.651
Additional information
Authors
NLP4BIA team at the Barcelona Supercomputing Center ([email protected]).
Contact information
jan.rodriguez [at] bsc.es
Licensing information
Funding
This research was funded by the Ministerio de Ciencia e Innovación (MICINN) under project AI4ProfHealth (PID2020-119266RA-I00 MICIU/AEI/10.13039/501100011033) and BARITONE (TED2021-129974B-C22). This work is also supported by the European Union’s Horizon Europe Co-ordination & Support Action under Grant Agreement No 101080430 (AI4HF) as well as Grant Agreement No 101057849 (DataTool4Heartproject).
Citing information
Please cite the following works:
@article{meddoprof,
title={{NLP applied to occupational health: MEDDOPROF shared task at IberLEF 2021 on automatic recognition, classification and normalization of professions and occupations from medical texts}},
author={Lima-López, Salvador and Farré-Maduell, Eulàlia and Miranda-Escalada, Antonio and Brivá-Iglesias, Vicent and Krallinger, Martin},
journal = {Procesamiento del Lenguaje Natural},
volume = {67},
year={2021},
issn = {1989-7553},
url = {http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6393},
pages = {243--256}}
Disclaimer
The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions.
When third parties deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of artificial intelligence.
Los modelos publicados en este repositorio tienen una finalidad generalista y están a disposición de terceros. Estos modelos pueden tener sesgos y/u otro tipo de distorsiones indeseables.
Cuando terceros desplieguen o proporcionen sistemas y/o servicios a otras partes usando alguno de estos modelos (o utilizando sistemas basados en estos modelos) o se conviertan en usuarios de los modelos, deben tener en cuenta que es su responsabilidad mitigar los riesgos derivados de su uso y, en todo caso, cumplir con la normativa aplicable, incluyendo la normativa en materia de uso de inteligencia artificial.
- Downloads last month
- 7
Model tree for BSC-NLP4BIA/prof-ner-cat-v1
Base model
PlanTL-GOB-ES/bsc-bio-ehr-esCollection including BSC-NLP4BIA/prof-ner-cat-v1
Evaluation results
- precision (micro) on MEDDOPROF-catself-reported0.743
- recall (micro) on MEDDOPROF-catself-reported0.717
- f1 (micro) on MEDDOPROF-catself-reported0.729
- precision (micro) on CataCCC-professionsself-reported0.838
- recall (micro) on CataCCC-professionsself-reported0.794
- f1 (micro) on CataCCC-professionsself-reported0.815