Edit model card

model_y3_research_1

This model is a fine-tuned version of klue/roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9169
  • Accuracy: 0.5979
  • F1: 0.5435
  • Precision: 0.5801
  • Recall: 0.5487

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.9798 1.0 97 0.9334 0.5833 0.4128 0.4359 0.4577
0.9489 2.0 194 0.9621 0.4792 0.2160 0.1597 0.3333
0.9564 3.0 291 0.9505 0.5104 0.3456 0.3323 0.3764
0.8319 4.0 388 0.8693 0.6458 0.5980 0.5970 0.6167
0.7045 5.0 485 1.1875 0.5729 0.4888 0.5051 0.4891
0.6337 6.0 582 1.7888 0.6042 0.4288 0.4648 0.4752
0.3682 7.0 679 2.0383 0.5521 0.4904 0.4889 0.4967
0.2195 8.0 776 2.3023 0.5625 0.4993 0.4986 0.5055
0.0244 9.0 873 2.8742 0.5417 0.4650 0.4650 0.4674
0.1459 10.0 970 2.9738 0.5521 0.4999 0.5001 0.5157

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
6
Safetensors
Model size
337M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BKforKorea/model_y3_research_1

Base model

klue/roberta-large
Finetuned
(67)
this model