|
--- |
|
license: apache-2.0 |
|
metrics: |
|
- cer |
|
--- |
|
## Welcome |
|
If you find this model helpful, please *like* this model and star us on https://github.com/LianjiaTech/BELLE ! |
|
|
|
# Belle-distilwhisper-large-v2-zh |
|
Fine tune [distilwhisper-large-v2](https://huggingface.co/distil-whisper/distil-large-v2) to enhance Chinese speech recognition capabilities. |
|
|
|
Similar to distilwhisper-large-v2, Belle-distilwhisper-large-v2-zh is **5.8 times faster** and has **51% fewer parameters** compared to whisper-large-v2. |
|
|
|
Despite having 51% fewer parameters, Belle-distilwhisper-large-v2-zh achieves a relative improvement of **-3% to 35%** over whisper-large-v2. |
|
|
|
It's important to note that the original distilwhisper-large-v2 cannot transcribe Chinese (it only outputs English). |
|
|
|
## Usage |
|
```python |
|
|
|
from transformers import pipeline |
|
|
|
transcriber = pipeline( |
|
"automatic-speech-recognition", |
|
model="BELLE-2/Belle-distilwhisper-large-v2-zh" |
|
) |
|
|
|
transcriber.model.config.forced_decoder_ids = ( |
|
transcriber.tokenizer.get_decoder_prompt_ids( |
|
language="zh", |
|
task="transcribe" |
|
) |
|
) |
|
|
|
transcription = transcriber("my_audio.wav") |
|
|
|
``` |
|
|
|
## Fine-tuning |
|
| Model | (Re)Sample Rate | Train Datasets | Fine-tuning (full or peft) | |
|
|:----------------:|:-------:|:----------------------------------------------------------:|:-----------:| |
|
| Belle-distilwhisper-large-v2-zh | 16KHz | [AISHELL-1](https://openslr.magicdatatech.com/resources/33/) [AISHELL-2](https://www.aishelltech.com/aishell_2) [WenetSpeech](https://wenet.org.cn/WenetSpeech/) [HKUST](https://catalog.ldc.upenn.edu/LDC2005S15) | [full fine-tuning](https://github.com/shuaijiang/Whisper-Finetune) | |
|
|
|
If you want to fine-thuning the model on your datasets, please reference to the [github repo](https://github.com/shuaijiang/Whisper-Finetune) |
|
|
|
|
|
## CER(%) β |
|
| Model | Parameters(M) |Language Tag| aishell_1_test( β ) |aishell_2_test( β )| wenetspeech_net ( β )| wenetspeech_meeting( β )| HKUST_dev( β )| |
|
|:----------------:|:-------:|:-------:|:-----------:|:-----------:|:--------:|:-----------:|:-------:| |
|
| whisper-large-v2 |1550 |Chinese | 8.818% | 6.183% | 12.343% | 26.413% | 31.917% | |
|
| distilwhisper-large-v2 |756| Chinese | - | - | - | - | - | |
|
| Belle-distilwhisper-large-v2-zh| 756 | Chinese | 5.958% | 6.477% | 12.786% | 17.039% | 20.771% | |
|
|
|
|
|
## Citation |
|
|
|
Please cite our paper and github when using our code, data or model. |
|
|
|
``` |
|
@misc{BELLE, |
|
author = {BELLEGroup}, |
|
title = {BELLE: Be Everyone's Large Language model Engine}, |
|
year = {2023}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
howpublished = {\url{https://github.com/LianjiaTech/BELLE}}, |
|
} |
|
``` |