Emu3: Next-Token Prediction is All You Need
| Project Page | Paper | 🤗HF Models | github | Demo |
We introduce Emu3, a new suite of state-of-the-art multimodal models trained solely with next-token prediction! By tokenizing images, text, and videos into a discrete space, we train a single transformer from scratch on a mixture of multimodal sequences.
Emu3 excels in both generation and perception
Emu3 outperforms several well-established task-specific models in both generation and perception tasks, surpassing flagship open models such as SDXL, LLaVA-1.6 and OpenSora-1.2, while eliminating the need for diffusion or compositional architectures.
Highlights
- Emu3 is capable of generating high-quality images following the text input, by simply predicting the next vision token. The model naturally supports flexible resolutions and styles.
- Emu3 shows strong vision-language understanding capabilities to see the physical world and provides coherent text responses. Notably, this capability is achieved without depending on a CLIP and a pretrained LLM.
- Emu3 simply generates a video causally by predicting the next token in a video sequence, unlike the video diffusion model as in Sora. With a video in context, Emu3 can also naturally extend the video and predict what will happen next.
Model Information
The Emu3-Stage1 model is the pre-trained weights of the first stage of the pre-training process of Emu3. The pre-training process of Emu3 is conducted in two stages. In the first stage, which does not utilize video data, training begins from scratch with a context length of 5120 for text and image data. The model supports image captioning and can generate images at a resolution of 512x512. You can use our training scripts for further instruction tuning for more image generation and perception tasks.
Quickstart
from PIL import Image
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor, AutoModelForCausalLM
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation import LogitsProcessorList, PrefixConstrainedLogitsProcessor, UnbatchedClassifierFreeGuidanceLogitsProcessor
import torch
import sys
sys.path.append(PATH_TO_BAAI_Emu3-Stage1_MODEL)
from processing_emu3 import Emu3Processor
# model path
EMU_HUB = "BAAI/Emu3-Stage1"
VQ_HUB = "BAAI/Emu3-VisionTokenizer"
# prepare model and processor
model = AutoModelForCausalLM.from_pretrained(
EMU_HUB,
device_map="cuda:0",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(EMU_HUB, trust_remote_code=True, padding_side="left")
image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=True)
image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
processor = Emu3Processor(image_processor, image_tokenizer, tokenizer, chat_template="{image_prompt}{text_prompt}")
# Image Generation
# prepare input
POSITIVE_PROMPT = " masterpiece, film grained, best quality."
NEGATIVE_PROMPT = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry."
classifier_free_guidance = 3.0
prompt = "a portrait of young girl."
prompt += POSITIVE_PROMPT
kwargs = dict(
mode='G',
ratio="1:1",
image_area=model.config.image_area,
return_tensors="pt",
padding="longest",
)
pos_inputs = processor(text=prompt, **kwargs)
neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs)
# prepare hyper parameters
GENERATION_CONFIG = GenerationConfig(
use_cache=True,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.pad_token_id,
max_new_tokens=40960,
do_sample=True,
top_k=2048,
)
h = pos_inputs.image_size[:, 0]
w = pos_inputs.image_size[:, 1]
constrained_fn = processor.build_prefix_constrained_fn(h, w)
logits_processor = LogitsProcessorList([
UnbatchedClassifierFreeGuidanceLogitsProcessor(
classifier_free_guidance,
model,
unconditional_ids=neg_inputs.input_ids.to("cuda:0"),
),
PrefixConstrainedLogitsProcessor(
constrained_fn ,
num_beams=1,
),
])
# generate
outputs = model.generate(
pos_inputs.input_ids.to("cuda:0"),
GENERATION_CONFIG,
logits_processor=logits_processor,
attention_mask=pos_inputs.attention_mask.to("cuda:0"),
)
mm_list = processor.decode(outputs[0])
for idx, im in enumerate(mm_list):
if not isinstance(im, Image.Image):
continue
im.save(f"result_{idx}.png")
# Multimodal Understanding
text = "The image depicts "
image = Image.open("assets/demo.png")
inputs = processor(
text=text,
image=image,
mode='U',
padding="longest",
return_tensors="pt",
)
GENERATION_CONFIG = GenerationConfig(
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=1024,
)
outputs = model.generate(
inputs.input_ids.to("cuda:0"),
GENERATION_CONFIG,
attention_mask=inputs.attention_mask.to("cuda:0"),
)
outputs = outputs[:, inputs.input_ids.shape[-1]:]
answers = processor.batch_decode(outputs, skip_special_tokens=True)
for ans in answers:
print(ans)
- Downloads last month
- 5,523