|
--- |
|
license: mit |
|
--- |
|
|
|
<div align="center"> |
|
<h1>EVA: An Open Billion-Scale Vision Foundation Model </h1> |
|
<h3><a href="https://arxiv.org/abs/2211.07636">EVA: Exploring the Limits of Masked Visual Representation Learning at Scale</a></h3> |
|
|
|
[Yuxin Fang](https://bit.ly/YuxinFang_GoogleScholar)<sup>2,1</sup>, [Wen Wang](https://scholar.google.com/citations?user=1ks0R04AAAAJ&hl)<sup>3,1</sup>, [Binhui Xie](https://binhuixie.github.io/)<sup>4,1</sup>, [Quan Sun](https://github.com/Quan-Sun)<sup>1</sup>, [Ledell Wu](https://scholar.google.com/citations?user=-eJHVt8AAAAJ&hl=en)<sup>1</sup>, [Xinggang Wang](https://xinggangw.info/)<sup>2</sup>, [Tiejun Huang](https://scholar.google.com/citations?user=knvEK4AAAAAJ&hl=en)<sup>1</sup>, [Xinlong Wang](https://www.xloong.wang/)<sup>1</sup>, [Yue Cao](http://yue-cao.me/)<sup>1</sup> |
|
|
|
<sup>1</sup>[BAAI](https://www.baai.ac.cn/english.html), <sup>2</sup>[HUST](http://english.hust.edu.cn/), <sup>3</sup>[ZJU](https://www.zju.edu.cn/english/), <sup>4</sup>[BIT](https://english.bit.edu.cn/) |
|
|
|
|
|
We launch **EVA**, a vision-centric foundation model to **E**xplore the limits of **V**isual representation at sc**A**le using only publicly accessible data and academic resources. **EVA** is a vanilla ViT pre-trained to reconstruct the masked out image-text aligned vision features (*i.e.*, CLIP features) conditioned on visible image patches. Via this pretext task, we can efficiently scale up EVA to one billion parameters, and sets new records on a broad range of representative vision downstream tasks. |
|
|
|
***EVA is the first open-sourced billion-scale vision foundation model that achieves state-of-the-art performance on a broad range of downstream tasks.*** |
|
|
|
</div> |
|
|
|
|
|
**Table of Contents** |
|
|
|
* [license: mit](#license-mit) |
|
* [EVA: An Open Billion-Scale Vision Foundation Model ](#eva-an-open-billion-scale-vision-foundation-model-) |
|
* [<a href="https://arxiv.org/abs/2211.07636" rel="nofollow">EVA: Exploring the Limits of Masked Visual Representation Learning at Scale</a>](#eva-exploring-the-limits-of-masked-visual-representation-learning-at-scale) |
|
* [Image Classification](#image-classification) |
|
* [Summary of EVA's image classification performance](#summary-of-evas-image-classification-performance) |
|
* [Video Classification](#video-classification) |
|
* [Object Detection & Instance Segmentation](#object-detection--instance-segmentation) |
|
* [COCO 2017 (single-scale evaluation on val set)](#coco-2017-single-scale-evaluation-on-val-set) |
|
* [LVIS v1.0 (single-scale evaluation on val set)](#lvis-v10-single-scale-evaluation-on-val-set) |
|
* [Semantic Segmentation](#semantic-segmentation) |
|
* [COCO-Stuff-164K](#coco-stuff-164k) |
|
* [ADE20K](#ade20k) |
|
* [EVA-CLIP](#eva-clip) |
|
* [Citation](#citation) |
|
* [License](#license) |
|
* [Contact](#contact) |
|
|
|
|
|
## Image Classification |
|
|
|
We provide **all pre-trained & fine-tuned** EVAs for the community. |
|
The following table summarizes the basic statistics of MIM pre-trained EVA and image classification EVA. |
|
|
|
| model name | #param. |pre-training epochs on merged-30M | intermeidate fine-tuning epochs on IN-21K | fine-tuning epochs on IN-1K | IN-1K top-1 acc. |weight | |
|
|------------|:------:|:------------------:|:------:|:------:|:------:|:------:| |
|
| `eva_psz14` | 1.0B | 150 | - | - | - | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_psz14.pt) (`2GB`) | |
|
| `eva_psz14to16` | 1.0B | 150 | - | - | - | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_psz14to16.pt) (`2GB`) | |
|
| `eva_21k_224px_psz14` | 1.0B | 150 | 60 | - | - | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_21k_224px_psz14.pt) (`2GB`) | |
|
| `eva_21k_1k_336px_psz14_ema` | 1.0B | 150 | 60 | 10 | **89.6** | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt) (`4GB`) | |
|
| `eva_21k_1k_560px_psz14_ema` | 1.0B | 150 | 60 | 15 | **89.7** | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_560px_psz14_ema_89p7.pt) (`4GB`) | |
|
|
|
- `eva_psz14to16` model interpolates the kernel size of `patch_embed` from `14x14` to `16x16`. This is useful for object detection, instance segmentation & semantic segmentation, *etc*. See [`interpolate_patch_14to16.py`](interpolate_patch_14to16.py) for implementation details. |
|
- For MIM pre-trained EVA and EVA-CLIP, we use `deepspeed` `fp16` format. IN-1K fine-tuned EVA weights are larger (`4GB` *v.s.* `2GB`) because ema updates models with `fp32` format. The weights of other downstream tasks are also with `fp32` format. |
|
|
|
</div> |
|
|
|
|
|
### Summary of EVA's image classification performance |
|
|
|
<div align="center"> |
|
|
|
| model | [IN-1K](https://github.com/rwightman/pytorch-image-models/blob/main/results/results-imagenet.csv) | [IN-V2](https://github.com/rwightman/pytorch-image-models/blob/main/results/results-imagenetv2-matched-frequency.csv) | [IN-ReaL](https://github.com/rwightman/pytorch-image-models/blob/main/results/results-imagenet-real.csv) | [IN-Adv.](https://github.com/rwightman/pytorch-image-models/blob/main/results/results-imagenet-a.csv) | [IN-Ren.](https://github.com/rwightman/pytorch-image-models/blob/main/results/results-imagenet-r.csv) | [IN-Ske.](https://github.com/rwightman/pytorch-image-models/blob/main/results/results-imagenet-r.csv) | ObjectNet | |
|
|:------------:|:------------------:|:------:|:------:| :------:|:------:|:------:|:------:| |
|
| EVA | 89.6 | 81.6 | 90.8 | 86.2 | 88.3 | 67.7 | 60.9 | |
|
|
|
</div> |
|
|
|
|
|
## Video Classification |
|
|
|
<div align="center"> |
|
|
|
| dataset | model name | init. weight | acc@1 | config | weight | logs | |
|
|:-----------:|:------------------:|:------------------------------------------------------------------------------------:|:--------:|:--------------------------------------------------:|:----------------------------------------------------------------------------------------:|:----------------------------------------:| |
|
| Kinetics722 | `eva_video_k722` | [`eva_psz14`](https://huggingface.co/BAAI/EVA/blob/main/eva_psz14.pt) | - | [config](configs/kinetics722_intermediate_ft.yaml) | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_video_k722.pth) (`4.8GB`) | [ft_k722](../logs/video/ft_k722_log.txt) | |
|
| Kinetics400 | `eva_video_k400` | [`eva_video_k722`](https://huggingface.co/BAAI/EVA/blob/main/eva_video_k722.pth) | **89.7** | [config](configs/kinetics400_ft.yaml) | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_video_k400.pth) (`4.8GB`) | [ft_k400](../logs/video/ft_k400_log.txt) | |
|
| Kinetics600 | `eva_video_k600` | [`eva_video_k722`](https://huggingface.co/BAAI/EVA/blob/main/eva_video_k722.pth) | **89.8** | [config](configs/kinetics600_ft.yaml) | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_video_k600.pth) (`4.8GB`) | [ft_k600](../logs/video/ft_k600_log.txt) | |
|
| Kinetics700 | `eva_video_k700` | [`eva_video_k722`](https://huggingface.co/BAAI/EVA/blob/main/eva_video_k722.pth) | **82.9** | [config](configs/kinetics700_ft.yaml) | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_video_k700.pth) (`4.8GB`) | [ft_k700](../logs/video/ft_k700_log.txt) | |
|
|
|
</div> |
|
|
|
|
|
## Object Detection & Instance Segmentation |
|
|
|
<div align="center"> |
|
|
|
| model name | #param. | pre-training interations on Objects365 | weight | |
|
|------------|:-------:|:--------------------------------------:|:-----------------------------------------------------------------------------:| |
|
| `eva_o365` | 1.1B | 380k | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_o365.pth) (`4GB`) | |
|
|
|
</div> |
|
|
|
|
|
### COCO 2017 (single-scale evaluation on `val` set) |
|
|
|
<div align="center"> |
|
|
|
| init. model weight | batch size | iter | AP box | AP mask | config | model weight | |
|
| :---: | :---: |:----:|:--------:|:---------------:|:---------------------------------------:|:--------------------------------------------------------------------:| |
|
| [`eva_o365`](https://huggingface.co/BAAI/EVA/blob/main/eva_o365.pth) | 64 | 35k | **64.2** | **53.9** | [config](projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_eva.py) | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_coco_det.pth) (`4GB`) | |
|
| [`eva_o365`](https://huggingface.co/BAAI/EVA/blob/main/eva_o365.pth) | 64 | 45k | **63.9** | **55.0** | [config](projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_eva.py) | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_coco_seg.pth) (`4GB`) | |
|
|
|
</div> |
|
|
|
### LVIS v1.0 (single-scale evaluation on `val` set) |
|
|
|
<div align="center"> |
|
|
|
| init. model weight | batch size | iter | AP box | AP mask | config | model weight | |
|
| :---: | :---: |:----:|:--------:|:---------------:|:---------------------------------------:|:--------------------------------------------------------------------:| |
|
| [`eva_o365`](https://huggingface.co/BAAI/EVA/blob/main/eva_o365.pth) | 64 | 75k | **62.2** | **55.0**| [config](projects/ViTDet/configs/LVIS/cascade_mask_rcnn_vitdet_eva.py) | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_lvis.pth) (`4GB`) | |
|
|
|
</div> |
|
|
|
|
|
## Semantic Segmentation |
|
|
|
### COCO-Stuff-164K |
|
|
|
<div align="center"> |
|
|
|
| init. model weight | batch size | iter | crop size | mIoU (ss) | config | seg model weight |logs| |
|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |
|
| [`eva_psz14to16`](https://huggingface.co/BAAI/EVA/blob/main/eva_psz14to16.pt) | 32 | 60k | 896 | **53.4** | [config](configs/coco_stuff164k/eva_mask2former_896_60k_cocostuff164k_ss.py) | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_sem_seg_mask2former_cocostuff_53p4.pth) | [training](../logs/sem_seg/ft_cocstuff164k_sem_seg_ss_53p4_training_log.txt) \| [evaluation](../logs/sem_seg/ft_cocstuff164k_sem_seg_ss_53p4.txt) |
|
|
|
</div> |
|
|
|
### ADE20K |
|
|
|
<div align="center"> |
|
|
|
| init. model weight | batch size | iter | crop size | mIoU | config | seg model weight |logs| |
|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |
|
| [`eva_sem_seg_coco`](https://huggingface.co/BAAI/EVA/blob/main/eva_sem_seg_mask2former_cocostuff_53p4.pth) | 64 | 20k | 896 | **61.5** (ss) \| **62.3** (ms) | [config](configs/ade20k/eva_mask2former_896_20k_coco164k2ade20k_ss.py) | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_sem_seg_mask2former_ade_ss61p5_ms62p3.pth) | [training](../logs/sem_seg/ft_ade20k_sem_seg_ms_62p3_training_log.txt) \| [evaluation](../logs/sem_seg/ft_ade20k_sem_seg_ms_62p3.txt) |
|
|
|
</div> |
|
|
|
|
|
|
|
## EVA-CLIP |
|
|
|
|
|
<div align="center"> |
|
|
|
| model name | #param. | precision | data | batch size | IN-1K zero-shot top-1 | weight | |
|
|:-----------:|:------:|:------:|:------:|:------:|:------:|:------:| |
|
| `eva_clip_psz14` | 1.3B | `fp16` | [LAION-400M](https://laion.ai/laion-400-open-dataset/) | 41K | **78.5** | [π€ HF link](https://huggingface.co/BAAI/EVA/blob/main/eva_clip_psz14.pt) (`2GB`) | |
|
|
|
</div> |
|
|
|
> The ImageNet-1K zero-shot classification performance is higher than our paper (`78.5` *v.s.* `78.2`) because of longer training. |
|
|
|
We choose to train a 1.3B CLIP model, not because it is easy, but because it is hard. Please refer to [this note](https://docs.google.com/document/d/1FXosAZ3wMrzThgnWR6KSkXIz4IMItq3umDGos38pJps/edit) for a glance of the challenges in training very large CLIP. |
|
|
|
To our knowledge, EVA-CLIP is **the largest performant open-sourced CLIP model** evaluated via zero-shot classification performance. |
|
We will updates the results in our paper soon. |
|
For more details of EVA-CLIP, please refer to Section 2.3.5 of [our paper](https://arxiv.org/pdf/2211.07636.pdf). |
|
|
|
We hope open-sourcing EVA-CLIP can facilitate future research in multi-modal learning, representation leaning, AIGC, *etc*. |
|
|
|
|
|
|
|
## Citation |
|
If you find our work helpful, please star this repo and cite the related articles. Thanks for your support! |
|
|
|
``` |
|
@article{EVA, |
|
title={EVA: Exploring the Limits of Masked Visual Representation Learning at Scale}, |
|
author={Fang, Yuxin and Wang, Wen and Xie, Binhui and Sun, Quan and Wu, Ledell and Wang, Xinggang and Huang, Tiejun and Wang, Xinlong and Cao, Yue}, |
|
journal={arXiv preprint arXiv:2211.07636}, |
|
year={2022} |
|
} |
|
``` |
|
|
|
|
|
## License |
|
|
|
The content of this project itself is licensed under the MIT License. |
|
|
|
## Contact |
|
|
|
For help or issues using EVA, please open a GitHub [issue](https://github.com/baaivision/EVA/issues/new). |
|
|
|
**We are hiring** at all levels at BAAI Vision Team, including full-time researchers, engineers and interns. |
|
If you are interested in working with us on **foundation model, self-supervised learning and multimodal learning**, please contactΒ [Yue Cao](http://yue-cao.me/) (`[email protected]`) and [Xinlong Wang](https://www.xloong.wang/) (`[email protected]`). |
|
|
|
|