Aviral2412's picture
End of training
de8f3aa verified
metadata
tags:
  - generated_from_trainer
datasets:
  - common_voice_1_0
metrics:
  - wer
model-index:
  - name: fineturning-without-pretraining
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_1_0
          type: common_voice_1_0
          config: en
          split: validation
          args: en
        metrics:
          - name: Wer
            type: wer
            value: 1.1837902495797232

fineturning-without-pretraining

This model is a fine-tuned version of on the common_voice_1_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 812.3214
  • Wer: 1.1838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2141.1597 2.15 500 908.3237 1.0
1549.364 4.29 1000 813.9642 1.1682
1442.1247 6.44 1500 788.9472 1.5341
1395.3347 8.58 2000 757.5609 1.2662
1344.5591 10.73 2500 751.7140 1.1790
1289.6164 12.88 3000 746.7259 1.2651
1248.0024 15.02 3500 761.1828 1.2634
1208.4588 17.17 4000 789.4526 1.1426
1162.758 19.31 4500 794.2302 1.1521
1118.2571 21.46 5000 803.2517 1.2117
1097.6801 23.61 5500 812.3214 1.1838

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2