metadata
base_model: Aviral2412/mini_model
tags:
- generated_from_trainer
datasets:
- common_voice_1_0
metrics:
- wer
model-index:
- name: fineturning-with-pretraining-3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_1_0
type: common_voice_1_0
config: en
split: validation
args: en
metrics:
- name: Wer
type: wer
value: 1.0000323289796973
fineturning-with-pretraining-3
This model is a fine-tuned version of Aviral2412/mini_model on the common_voice_1_0 dataset. It achieves the following results on the evaluation set:
- Loss: 2.9160
- Wer: 1.0000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.0042 | 4.27 | 500 | 3.1928 | 1.0000 |
2.9673 | 8.55 | 1000 | 3.0856 | 1.0000 |
2.9929 | 12.82 | 1500 | 3.0173 | 1.0000 |
2.9458 | 17.09 | 2000 | 2.9282 | 1.0000 |
2.9084 | 21.37 | 2500 | 2.9734 | 1.0000 |
2.8651 | 25.64 | 3000 | 2.9234 | 1.0000 |
2.8307 | 29.91 | 3500 | 2.9160 | 1.0000 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2