output_dir
This model is a fine-tuned version of Aravindan/gpt2out on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 1.9619
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.6318 | 0.0147 | 30 | 2.4202 |
2.5147 | 0.0294 | 60 | 2.3425 |
2.4599 | 0.0440 | 90 | 2.2838 |
2.4009 | 0.0587 | 120 | 2.2386 |
2.394 | 0.0734 | 150 | 2.1971 |
2.3459 | 0.0881 | 180 | 2.1614 |
2.3057 | 0.1027 | 210 | 2.1324 |
2.3085 | 0.1174 | 240 | 2.1076 |
2.2675 | 0.1321 | 270 | 2.0891 |
2.2348 | 0.1468 | 300 | 2.0716 |
2.2167 | 0.1614 | 330 | 2.0594 |
2.1827 | 0.1761 | 360 | 2.0481 |
2.2049 | 0.1908 | 390 | 2.0390 |
2.1803 | 0.2055 | 420 | 2.0303 |
2.1709 | 0.2201 | 450 | 2.0250 |
2.1915 | 0.2348 | 480 | 2.0183 |
2.1583 | 0.2495 | 510 | 2.0120 |
2.168 | 0.2642 | 540 | 2.0072 |
2.1678 | 0.2788 | 570 | 2.0026 |
2.1545 | 0.2935 | 600 | 1.9988 |
2.1561 | 0.3082 | 630 | 1.9941 |
2.1442 | 0.3229 | 660 | 1.9913 |
2.1393 | 0.3375 | 690 | 1.9867 |
2.1489 | 0.3522 | 720 | 1.9834 |
2.1304 | 0.3669 | 750 | 1.9814 |
2.1175 | 0.3816 | 780 | 1.9783 |
2.113 | 0.3962 | 810 | 1.9753 |
2.1025 | 0.4109 | 840 | 1.9729 |
2.1181 | 0.4256 | 870 | 1.9711 |
2.0947 | 0.4403 | 900 | 1.9688 |
2.0868 | 0.4549 | 930 | 1.9665 |
2.1061 | 0.4696 | 960 | 1.9638 |
2.1096 | 0.4843 | 990 | 1.9619 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for Aravindan/output_dir
Unable to build the model tree, the base model loops to the model itself. Learn more.