|
--- |
|
base_model: naufalihsan/indonesian-sbert-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- indonlu |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: sentiment |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: indonlu |
|
type: indonlu |
|
config: smsa |
|
split: validation |
|
args: smsa |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.95 |
|
- name: Precision |
|
type: precision |
|
value: 0.9499758037063356 |
|
- name: Recall |
|
type: recall |
|
value: 0.95 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9496487652420723 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# sentiment |
|
|
|
This model is a fine-tuned version of [naufalihsan/indonesian-sbert-large](https://huggingface.co/naufalihsan/indonesian-sbert-large) on the indonlu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4450 |
|
- Accuracy: 0.95 |
|
- Precision: 0.9500 |
|
- Recall: 0.95 |
|
- F1: 0.9496 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 40 |
|
- eval_batch_size: 40 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 275 | 0.2837 | 0.9405 | 0.9427 | 0.9405 | 0.9396 | |
|
| 0.0501 | 2.0 | 550 | 0.1966 | 0.9460 | 0.9468 | 0.9460 | 0.9458 | |
|
| 0.0501 | 3.0 | 825 | 0.2927 | 0.9437 | 0.9435 | 0.9437 | 0.9427 | |
|
| 0.0369 | 4.0 | 1100 | 0.3666 | 0.9460 | 0.9459 | 0.9460 | 0.9456 | |
|
| 0.0369 | 5.0 | 1375 | 0.3579 | 0.9468 | 0.9465 | 0.9468 | 0.9465 | |
|
| 0.0098 | 6.0 | 1650 | 0.4497 | 0.9476 | 0.9479 | 0.9476 | 0.9471 | |
|
| 0.0098 | 7.0 | 1925 | 0.4308 | 0.95 | 0.9501 | 0.95 | 0.9496 | |
|
| 0.0012 | 8.0 | 2200 | 0.4402 | 0.95 | 0.9499 | 0.95 | 0.9496 | |
|
| 0.0012 | 9.0 | 2475 | 0.4429 | 0.95 | 0.9500 | 0.95 | 0.9496 | |
|
| 0.0007 | 10.0 | 2750 | 0.4450 | 0.95 | 0.9500 | 0.95 | 0.9496 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|