AptaArkana's picture
Model save
28f707e verified
|
raw
history blame
1.7 kB
---
license: mit
base_model: hanifnoerr/Fine-tuned-Indonesian-Sentiment-Classifier
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment
This model is a fine-tuned version of [hanifnoerr/Fine-tuned-Indonesian-Sentiment-Classifier](https://huggingface.co/hanifnoerr/Fine-tuned-Indonesian-Sentiment-Classifier) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6815
- Accuracy: 0.7266
- Precision: 0.7267
- Recall: 0.7266
- F1: 0.7267
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.7972 | 1.0 | 1301 | 0.6830 | 0.7120 | 0.7230 | 0.7120 | 0.7073 |
| 0.5085 | 2.0 | 2602 | 0.6815 | 0.7266 | 0.7267 | 0.7266 | 0.7267 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2