|
--- |
|
license: afl-3.0 |
|
base_model: Davlan/bert-base-multilingual-cased-ner-hrl |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: belajarner_bert_case |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# belajarner_bert_case |
|
|
|
This model is a fine-tuned version of [Davlan/bert-base-multilingual-cased-ner-hrl](https://huggingface.co/Davlan/bert-base-multilingual-cased-ner-hrl) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3309 |
|
- Precision: 0.8120 |
|
- Recall: 0.8430 |
|
- F1: 0.8272 |
|
- Accuracy: 0.9423 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2528 | 1.0 | 1567 | 0.2352 | 0.7442 | 0.8116 | 0.7765 | 0.9282 | |
|
| 0.1653 | 2.0 | 3134 | 0.2250 | 0.8008 | 0.8218 | 0.8112 | 0.9378 | |
|
| 0.1125 | 3.0 | 4701 | 0.2545 | 0.7703 | 0.8381 | 0.8028 | 0.9343 | |
|
| 0.083 | 4.0 | 6268 | 0.2633 | 0.8065 | 0.8353 | 0.8206 | 0.9401 | |
|
| 0.0602 | 5.0 | 7835 | 0.2860 | 0.8124 | 0.8229 | 0.8176 | 0.9413 | |
|
| 0.0411 | 6.0 | 9402 | 0.3129 | 0.8026 | 0.8353 | 0.8186 | 0.9404 | |
|
| 0.0324 | 7.0 | 10969 | 0.3180 | 0.8036 | 0.8400 | 0.8214 | 0.9418 | |
|
| 0.0248 | 8.0 | 12536 | 0.3309 | 0.8120 | 0.8430 | 0.8272 | 0.9423 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|