|
--- |
|
license: afl-3.0 |
|
base_model: Davlan/bert-base-multilingual-cased-ner-hrl |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: belajarner_bert_case |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# belajarner_bert_case |
|
|
|
This model is a fine-tuned version of [Davlan/bert-base-multilingual-cased-ner-hrl](https://huggingface.co/Davlan/bert-base-multilingual-cased-ner-hrl) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3367 |
|
- Precision: 0.8139 |
|
- Recall: 0.8422 |
|
- F1: 0.8278 |
|
- Accuracy: 0.9420 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2503 | 1.0 | 1567 | 0.2331 | 0.7484 | 0.8148 | 0.7802 | 0.9294 | |
|
| 0.1645 | 2.0 | 3134 | 0.2307 | 0.7987 | 0.8158 | 0.8072 | 0.9363 | |
|
| 0.1097 | 3.0 | 4701 | 0.2588 | 0.7764 | 0.8334 | 0.8039 | 0.9360 | |
|
| 0.0822 | 4.0 | 6268 | 0.2624 | 0.8056 | 0.8389 | 0.8219 | 0.9409 | |
|
| 0.061 | 5.0 | 7835 | 0.2927 | 0.8183 | 0.8275 | 0.8229 | 0.9414 | |
|
| 0.0407 | 6.0 | 9402 | 0.3156 | 0.8021 | 0.8350 | 0.8182 | 0.9399 | |
|
| 0.0315 | 7.0 | 10969 | 0.3257 | 0.8102 | 0.8381 | 0.8239 | 0.9413 | |
|
| 0.0238 | 8.0 | 12536 | 0.3367 | 0.8139 | 0.8422 | 0.8278 | 0.9420 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|