|
--- |
|
license: apache-2.0 |
|
base_model: Toshifumi/distilbert-base-multilingual-cased-finetuned-emotion |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- indonlu |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: indonesian-distilbert-base-cased-finetuned-indonlu |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: indonlu |
|
type: indonlu |
|
config: emot |
|
split: validation |
|
args: emot |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6113636363636363 |
|
- name: Precision |
|
type: precision |
|
value: 0.6057688190944959 |
|
- name: Recall |
|
type: recall |
|
value: 0.6113636363636363 |
|
- name: F1 |
|
type: f1 |
|
value: 0.6068671444135532 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indonesian-distilbert-base-cased-finetuned-indonlu |
|
|
|
This model is a fine-tuned version of [Toshifumi/distilbert-base-multilingual-cased-finetuned-emotion](https://huggingface.co/Toshifumi/distilbert-base-multilingual-cased-finetuned-emotion) on the indonlu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1300 |
|
- Accuracy: 0.6114 |
|
- Precision: 0.6058 |
|
- Recall: 0.6114 |
|
- F1: 0.6069 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 221 | 1.2623 | 0.475 | 0.4817 | 0.475 | 0.4458 | |
|
| No log | 2.0 | 442 | 1.0937 | 0.55 | 0.5555 | 0.55 | 0.5444 | |
|
| 1.2289 | 3.0 | 663 | 1.0749 | 0.5886 | 0.6003 | 0.5886 | 0.5898 | |
|
| 1.2289 | 4.0 | 884 | 1.0836 | 0.5818 | 0.6019 | 0.5818 | 0.5800 | |
|
| 0.7857 | 5.0 | 1105 | 1.1300 | 0.6114 | 0.6058 | 0.6114 | 0.6069 | |
|
| 0.7857 | 6.0 | 1326 | 1.1595 | 0.6 | 0.5996 | 0.6 | 0.5984 | |
|
| 0.5288 | 7.0 | 1547 | 1.1767 | 0.6 | 0.5986 | 0.6 | 0.5958 | |
|
| 0.5288 | 8.0 | 1768 | 1.2195 | 0.6 | 0.5969 | 0.6 | 0.5952 | |
|
| 0.5288 | 9.0 | 1989 | 1.2422 | 0.5932 | 0.5915 | 0.5932 | 0.5909 | |
|
| 0.3685 | 10.0 | 2210 | 1.2406 | 0.5841 | 0.5842 | 0.5841 | 0.5830 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|