|
--- |
|
license: mit |
|
base_model: indolem/indobert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: indonesian-brand-indoBERT-finetuned |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# indonesian-brand-indoBERT-finetuned |
|
|
|
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6848 |
|
- Accuracy: 0.8601 |
|
- Precision: 0.8601 |
|
- Recall: 0.8601 |
|
- F1: 0.8601 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 304 | 0.4935 | 0.8132 | 0.8132 | 0.8132 | 0.8132 | |
|
| 0.5911 | 2.0 | 608 | 0.4046 | 0.8362 | 0.8362 | 0.8362 | 0.8362 | |
|
| 0.5911 | 3.0 | 912 | 0.4873 | 0.8305 | 0.8305 | 0.8305 | 0.8305 | |
|
| 0.3204 | 4.0 | 1216 | 0.4774 | 0.8560 | 0.8560 | 0.8560 | 0.8560 | |
|
| 0.2154 | 5.0 | 1520 | 0.5759 | 0.8486 | 0.8486 | 0.8486 | 0.8486 | |
|
| 0.2154 | 6.0 | 1824 | 0.6334 | 0.8568 | 0.8568 | 0.8568 | 0.8568 | |
|
| 0.1454 | 7.0 | 2128 | 0.6848 | 0.8601 | 0.8601 | 0.8601 | 0.8601 | |
|
| 0.1454 | 8.0 | 2432 | 0.7325 | 0.8560 | 0.8560 | 0.8560 | 0.8560 | |
|
| 0.0982 | 9.0 | 2736 | 0.7782 | 0.8568 | 0.8568 | 0.8568 | 0.8568 | |
|
| 0.0729 | 10.0 | 3040 | 0.7979 | 0.8584 | 0.8584 | 0.8584 | 0.8584 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|