Anujgr8's picture
End of training
d5e98d9 verified
---
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-base-Telugu-large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-Telugu-large
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3811
- Wer: 0.3630
- Cer: 0.0716
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 6
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 7.205 | 1.9737 | 300 | 3.2285 | 1.0 | 1.0 |
| 1.3015 | 3.9474 | 600 | 0.7145 | 0.7256 | 0.1790 |
| 0.6733 | 5.9211 | 900 | 0.5099 | 0.6079 | 0.1339 |
| 0.5037 | 7.8947 | 1200 | 0.4510 | 0.5383 | 0.1146 |
| 0.4039 | 9.8684 | 1500 | 0.3932 | 0.4957 | 0.1011 |
| 0.3224 | 11.8421 | 1800 | 0.3733 | 0.4537 | 0.0909 |
| 0.2699 | 13.8158 | 2100 | 0.3685 | 0.4291 | 0.0840 |
| 0.2177 | 15.7895 | 2400 | 0.3664 | 0.3836 | 0.0747 |
| 0.19 | 17.7632 | 2700 | 0.3722 | 0.3821 | 0.0743 |
| 0.1596 | 19.7368 | 3000 | 0.3811 | 0.3630 | 0.0716 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 1.18.3
- Tokenizers 0.19.1