|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: Anshul15/dfmodel_epoch2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: dfmodel_epoch3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# dfmodel_epoch3 |
|
|
|
This model is a fine-tuned version of [Anshul15/dfmodel_epoch2](https://huggingface.co/Anshul15/dfmodel_epoch2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5686 |
|
- Accuracy: 0.6282 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 0.0591 | 0.0126 | 10 | 0.0988 | 0.9854 | |
|
| 0.1759 | 0.0252 | 20 | 0.2753 | 0.9298 | |
|
| 0.387 | 0.0378 | 30 | 0.4861 | 0.6915 | |
|
| 0.5898 | 0.0503 | 40 | 0.6165 | 0.5035 | |
|
| 0.6176 | 0.0629 | 50 | 0.6575 | 0.6282 | |
|
| 0.6772 | 0.0755 | 60 | 0.6412 | 0.4544 | |
|
| 0.6112 | 0.0881 | 70 | 0.6178 | 0.6282 | |
|
| 0.6387 | 0.1007 | 80 | 0.6395 | 0.6282 | |
|
| 0.6325 | 0.1133 | 90 | 0.5668 | 0.6282 | |
|
| 0.3027 | 0.1259 | 100 | 0.0538 | 0.9912 | |
|
| 0.0551 | 0.1385 | 110 | 0.0631 | 0.9888 | |
|
| 0.0382 | 0.1510 | 120 | 0.0700 | 0.9877 | |
|
| 0.0683 | 0.1636 | 130 | 0.0695 | 0.9871 | |
|
| 0.0869 | 0.1762 | 140 | 0.0642 | 0.9884 | |
|
| 0.0341 | 0.1888 | 150 | 0.0602 | 0.9891 | |
|
| 0.0688 | 0.2014 | 160 | 0.0598 | 0.9895 | |
|
| 0.0391 | 0.2140 | 170 | 0.0604 | 0.9893 | |
|
| 0.0216 | 0.2266 | 180 | 0.0605 | 0.9895 | |
|
| 0.0675 | 0.2392 | 190 | 0.0600 | 0.9895 | |
|
| 0.1167 | 0.2517 | 200 | 0.1437 | 0.9695 | |
|
| 0.1678 | 0.2643 | 210 | 0.2156 | 0.9404 | |
|
| 0.1978 | 0.2769 | 220 | 0.2365 | 0.9284 | |
|
| 0.2246 | 0.2895 | 230 | 0.2520 | 0.9245 | |
|
| 0.2508 | 0.3021 | 240 | 0.2419 | 0.9253 | |
|
| 0.2886 | 0.3147 | 250 | 0.2349 | 0.9279 | |
|
| 0.1919 | 0.3273 | 260 | 0.1301 | 0.9701 | |
|
| 0.1344 | 0.3398 | 270 | 0.0668 | 0.9887 | |
|
| 0.1049 | 0.3524 | 280 | 0.1200 | 0.9786 | |
|
| 0.1485 | 0.3650 | 290 | 0.1284 | 0.9728 | |
|
| 0.404 | 0.3776 | 300 | 0.7198 | 0.6366 | |
|
| 0.6682 | 0.3902 | 310 | 0.6518 | 0.6282 | |
|
| 0.6527 | 0.4028 | 320 | 0.6488 | 0.6282 | |
|
| 0.675 | 0.4154 | 330 | 0.5839 | 0.6282 | |
|
| 0.5118 | 0.4280 | 340 | 0.4812 | 0.6967 | |
|
| 0.4476 | 0.4405 | 350 | 0.4491 | 0.7373 | |
|
| 0.4241 | 0.4531 | 360 | 0.4362 | 0.7502 | |
|
| 0.4772 | 0.4657 | 370 | 0.4350 | 0.7514 | |
|
| 0.408 | 0.4783 | 380 | 0.4618 | 0.7511 | |
|
| 0.5326 | 0.4909 | 390 | 0.5499 | 0.6282 | |
|
| 0.5417 | 0.5035 | 400 | 0.5747 | 0.6282 | |
|
| 0.5644 | 0.5161 | 410 | 0.5884 | 0.5368 | |
|
| 0.5935 | 0.5287 | 420 | 0.5833 | 0.6282 | |
|
| 0.611 | 0.5412 | 430 | 0.5841 | 0.6282 | |
|
| 0.5653 | 0.5538 | 440 | 0.5833 | 0.6282 | |
|
| 0.6195 | 0.5664 | 450 | 0.5838 | 0.6282 | |
|
| 0.5475 | 0.5790 | 460 | 0.5894 | 0.6282 | |
|
| 0.5987 | 0.5916 | 470 | 0.5847 | 0.6282 | |
|
| 0.6024 | 0.6042 | 480 | 0.5911 | 0.5301 | |
|
| 0.5649 | 0.6168 | 490 | 0.5865 | 0.6282 | |
|
| 0.5802 | 0.6294 | 500 | 0.5889 | 0.6282 | |
|
| 0.6224 | 0.6419 | 510 | 0.5955 | 0.5285 | |
|
| 0.5903 | 0.6545 | 520 | 0.5844 | 0.6282 | |
|
| 0.5752 | 0.6671 | 530 | 0.5864 | 0.6282 | |
|
| 0.5967 | 0.6797 | 540 | 0.5861 | 0.6282 | |
|
| 0.5692 | 0.6923 | 550 | 0.5936 | 0.6282 | |
|
| 0.5897 | 0.7049 | 560 | 0.5991 | 0.6282 | |
|
| 0.5739 | 0.7175 | 570 | 0.6019 | 0.6282 | |
|
| 0.6136 | 0.7300 | 580 | 0.5948 | 0.6282 | |
|
| 0.588 | 0.7426 | 590 | 0.5823 | 0.6282 | |
|
| 0.6397 | 0.7552 | 600 | 0.5791 | 0.6282 | |
|
| 0.5694 | 0.7678 | 610 | 0.5803 | 0.6282 | |
|
| 0.574 | 0.7804 | 620 | 0.5781 | 0.6282 | |
|
| 0.572 | 0.7930 | 630 | 0.5781 | 0.6282 | |
|
| 0.5664 | 0.8056 | 640 | 0.5782 | 0.6282 | |
|
| 0.5675 | 0.8182 | 650 | 0.5788 | 0.6282 | |
|
| 0.5544 | 0.8307 | 660 | 0.5778 | 0.6282 | |
|
| 0.5565 | 0.8433 | 670 | 0.5785 | 0.6282 | |
|
| 0.5847 | 0.8559 | 680 | 0.5780 | 0.6282 | |
|
| 0.5708 | 0.8685 | 690 | 0.5783 | 0.6282 | |
|
| 0.5875 | 0.8811 | 700 | 0.5784 | 0.6282 | |
|
| 0.6177 | 0.8937 | 710 | 0.5781 | 0.6282 | |
|
| 0.5834 | 0.9063 | 720 | 0.5783 | 0.6282 | |
|
| 0.5562 | 0.9189 | 730 | 0.5751 | 0.6282 | |
|
| 0.5676 | 0.9314 | 740 | 0.5705 | 0.6282 | |
|
| 0.5779 | 0.9440 | 750 | 0.5698 | 0.6282 | |
|
| 0.5487 | 0.9566 | 760 | 0.5698 | 0.6282 | |
|
| 0.572 | 0.9692 | 770 | 0.5690 | 0.6282 | |
|
| 0.5687 | 0.9818 | 780 | 0.5687 | 0.6282 | |
|
| 0.567 | 0.9944 | 790 | 0.5686 | 0.6282 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0.dev0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.21.1.dev0 |
|
- Tokenizers 0.19.1 |
|
|