Edit model card

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - JA dataset.

Kanji are converted into Hiragana using the pykakasi library during training and evaluation. The model can output both Hiragana and Katakana characters. Since there is no spacing, WER is not a suitable metric for evaluating performance and CER is more suitable.

On mozilla-foundation/common_voice_8_0 it achieved:

  • cer: 23.64%

On speech-recognition-community-v2/dev_data it achieved:

  • cer: 30.99%

It achieves the following results on the evaluation set:

  • Loss: 0.5212
  • Wer: 1.3068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 48
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.0974 4.72 1000 4.0178 1.9535
2.1276 9.43 2000 0.9301 1.2128
1.7622 14.15 3000 0.7103 1.5527
1.6397 18.87 4000 0.6729 1.4269
1.5468 23.58 5000 0.6087 1.2497
1.4885 28.3 6000 0.5786 1.3222
1.451 33.02 7000 0.5726 1.3768
1.3912 37.74 8000 0.5518 1.2497
1.3617 42.45 9000 0.5352 1.2694
1.3113 47.17 10000 0.5228 1.2781

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset mozilla-foundation/common_voice_8_0 --config ja --split test --log_outputs
  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python ./eval.py --model_id AndrewMcDowell/wav2vec2-xls-r-300m-japanese --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Downloads last month
33
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train AndrewMcDowell/wav2vec2-xls-r-300m-japanese

Evaluation results