Edit model card

clasificador-muchocine

This model is a fine-tuned version of mrm8488/electricidad-base-discriminator on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4458
  • Accuracy: 0.4452

Model description

Modelo entrenado con el dataset de muchocine con el que se puede clasificar una reseña siguiendo el sistema de valoración clásico de una a cinco estrellas.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 388 1.3706 0.3897
1.4239 2.0 776 1.3496 0.4297
0.9976 3.0 1164 1.4458 0.4452

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AndreaMS/clasificador-muchocine

Finetuned
(91)
this model