metadata
license: mit
base_model: google/gemma-7b
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: gemma-7b
results: []
library_name: peft
datasets:
- AndersGiovanni/10-dim
language:
- en
pipeline_tag: text-classification
gemma-7b
This model is a fine-tuned version of google/gemma-7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4939
- Accuracy: 0.0806
- Precision: 0.4535
- Recall: 0.3826
- F1: 0.4150
- Hamming Loss: 0.2312
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Framework versions
- PEFT 0.5.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2