Alred's picture
update model card README.md
8853f90
metadata
license: apache-2.0
tags:
  - summarization
  - generated_from_trainer
datasets:
  - cnn_dailymail
model-index:
  - name: t5-v1_1-small-finetuned-summarization-cnn-ver1
    results: []

t5-v1_1-small-finetuned-summarization-cnn-ver1

This model is a fine-tuned version of google/t5-v1_1-small on the cnn_dailymail dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7467
  • Bertscore-mean-precision: 0.8764
  • Bertscore-mean-recall: 0.8519
  • Bertscore-mean-f1: 0.8639
  • Bertscore-median-precision: 0.8746
  • Bertscore-median-recall: 0.8518
  • Bertscore-median-f1: 0.8632

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Bertscore-mean-precision Bertscore-mean-recall Bertscore-mean-f1 Bertscore-median-precision Bertscore-median-recall Bertscore-median-f1
4.6845 1.0 718 2.9003 0.8698 0.8456 0.8574 0.8693 0.8445 0.8570
3.7925 2.0 1436 2.7654 0.8765 0.8519 0.8639 0.8745 0.8512 0.8629
3.6332 3.0 2154 2.7467 0.8764 0.8519 0.8639 0.8746 0.8518 0.8632

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.0
  • Tokenizers 0.13.2