Alizee's picture
cosine_lr-1.5e-05_ep-3_bs-32-End_of_training
e6cf178 verified
|
raw
history blame
4.5 kB
metadata
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-large-finetuned-wikiner-fr
    results: []

xlm-roberta-large-finetuned-wikiner-fr

This model is a fine-tuned version of xlm-roberta-large on the Alizee/wikiner_fr_mixed_caps dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0518
  • Precision: 0.8881
  • Recall: 0.9014
  • F1: 0.8947
  • Accuracy: 0.9855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.02
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1032 0.1 374 0.0853 0.7645 0.8170 0.7899 0.9742
0.0767 0.2 748 0.0721 0.8111 0.8423 0.8264 0.9785
0.074 0.3 1122 0.0655 0.8252 0.8502 0.8375 0.9797
0.0634 0.4 1496 0.0629 0.8423 0.8694 0.8556 0.9809
0.0605 0.5 1870 0.0610 0.8515 0.8711 0.8612 0.9808
0.0578 0.6 2244 0.0594 0.8633 0.8744 0.8688 0.9822
0.0592 0.7 2618 0.0555 0.8624 0.8833 0.8727 0.9825
0.0567 0.8 2992 0.0534 0.8626 0.8838 0.8731 0.9830
0.0522 0.9 3366 0.0563 0.8560 0.8771 0.8664 0.9818
0.0516 1.0 3739 0.0556 0.8702 0.8869 0.8785 0.9831
0.0438 1.0 3740 0.0558 0.8712 0.8873 0.8792 0.9831
0.0395 1.1 4114 0.0565 0.8696 0.8856 0.8775 0.9830
0.0371 1.2 4488 0.0536 0.8762 0.8910 0.8835 0.9838
0.0403 1.3 4862 0.0531 0.8709 0.8887 0.8797 0.9835
0.0366 1.4 5236 0.0517 0.8791 0.8912 0.8851 0.9843
0.037 1.5 5610 0.0510 0.8830 0.8936 0.8883 0.9847
0.0368 1.6 5984 0.0492 0.8795 0.8940 0.8867 0.9845
0.0359 1.7 6358 0.0501 0.8833 0.8986 0.8909 0.9850
0.034 1.8 6732 0.0496 0.8852 0.8986 0.8918 0.9852
0.0327 1.9 7106 0.0512 0.8762 0.8948 0.8854 0.9843
0.0325 2.0 7478 0.0512 0.8829 0.8945 0.8887 0.9844
0.01 2.0 7480 0.0512 0.8836 0.8945 0.8890 0.9843
0.0232 2.1 7854 0.0526 0.8870 0.9002 0.8936 0.9852
0.0235 2.2 8228 0.0530 0.8841 0.8983 0.8911 0.9848
0.0211 2.3 8602 0.0542 0.8875 0.9008 0.8941 0.9852
0.0235 2.4 8976 0.0525 0.8883 0.9008 0.8945 0.9855
0.0232 2.5 9350 0.0525 0.8874 0.9013 0.8943 0.9855
0.0238 2.6 9724 0.0517 0.8861 0.9011 0.8935 0.9854
0.0223 2.7 10098 0.0513 0.8893 0.9016 0.8954 0.9856
0.0226 2.8 10472 0.0517 0.8892 0.9017 0.8954 0.9856
0.0228 2.9 10846 0.0517 0.8879 0.9013 0.8945 0.9855
0.0235 3.0 11217 0.0518 0.8881 0.9014 0.8947 0.9855

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0