Edit model card

glue_sst_classifier

This model is a fine-tuned version of bert-base-cased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2359
  • F1: 0.9034
  • Accuracy: 0.9014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy
0.3653 0.19 100 0.3213 0.8717 0.8727
0.291 0.38 200 0.2662 0.8936 0.8911
0.2239 0.57 300 0.2417 0.9081 0.9060
0.2306 0.76 400 0.2359 0.9105 0.9094
0.2185 0.95 500 0.2371 0.9011 0.8991

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Alassea/glue_sst_classifier

Adapters
5 models

Dataset used to train Alassea/glue_sst_classifier

Evaluation results