Inference code:
Use this python code for inference
# Installs Unsloth, Xformers (Flash Attention) and all other packages!
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --no-deps xformers trl peft accelerate bitsandbytes
from unsloth import FastLanguageModel
max_seq_length = 2048
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "AhmedBou/Gemma-7b-EngText-ArabicSummary",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model)
input = """
past a news article here
"""
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
input, # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
Uploaded model
- Developed by: AhmedBou
- License: apache-2.0
- Finetuned from model : unsloth/gemma-7b-bnb-4bit
This gemma model was trained 2x faster with Unsloth and Huggingface's TRL library.
Model tree for AhmedBou/Gemma-7b-EngText-ArabicSummary
Base model
unsloth/gemma-7b-bnb-4bit