metadata
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: Whisper Tiny EN-US - Agneev M
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Minds 14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 0.3488372093023256
Whisper Tiny EN-US - Agneev M
This model is a fine-tuned version of openai/whisper-tiny on the Minds 14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6326
- Wer Ortho: 0.3668
- Wer: 0.3488
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 5
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.3661 | 14.29 | 50 | 0.6326 | 0.3668 | 0.3488 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3