Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -15
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.62 +/- 0.23
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c402e75b4b18dcbb2a89137c45857c96679e226d5d5c920719ea9aac6fa28b2b
|
3 |
+
size 108028
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,12 +11,7 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
15 |
-
"log_std_init": -3,
|
16 |
-
"net_arch": [
|
17 |
-
400,
|
18 |
-
300
|
19 |
-
],
|
20 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
21 |
"optimizer_kwargs": {
|
22 |
"alpha": 0.99,
|
@@ -51,7 +46,7 @@
|
|
51 |
"_num_timesteps_at_start": 0,
|
52 |
"seed": null,
|
53 |
"action_noise": null,
|
54 |
-
"start_time":
|
55 |
"learning_rate": 0.0007,
|
56 |
"tensorboard_log": null,
|
57 |
"lr_schedule": {
|
@@ -60,10 +55,10 @@
|
|
60 |
},
|
61 |
"_last_obs": {
|
62 |
":type:": "<class 'collections.OrderedDict'>",
|
63 |
-
":serialized:": "
|
64 |
-
"achieved_goal": "[[ 0.
|
65 |
-
"desired_goal": "[[
|
66 |
-
"observation": "[[ 0.
|
67 |
},
|
68 |
"_last_episode_starts": {
|
69 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -71,9 +66,9 @@
|
|
71 |
},
|
72 |
"_last_original_obs": {
|
73 |
":type:": "<class 'collections.OrderedDict'>",
|
74 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
75 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
76 |
-
"desired_goal": "[[ 0.
|
77 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
78 |
},
|
79 |
"_episode_num": 0,
|
@@ -82,7 +77,7 @@
|
|
82 |
"_current_progress_remaining": 0.0,
|
83 |
"ep_info_buffer": {
|
84 |
":type:": "<class 'collections.deque'>",
|
85 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
86 |
},
|
87 |
"ep_success_buffer": {
|
88 |
":type:": "<class 'collections.deque'>",
|
@@ -90,7 +85,7 @@
|
|
90 |
},
|
91 |
"_n_updates": 50000,
|
92 |
"n_steps": 5,
|
93 |
-
"gamma": 0.
|
94 |
"gae_lambda": 1.0,
|
95 |
"ent_coef": 0.0,
|
96 |
"vf_coef": 0.5,
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
|
|
|
|
|
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1678306263794689226,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvzrHPsMZs7wg9w4/vzrHPsMZs7wg9w4/vzrHPsMZs7wg9w4/vzrHPsMZs7wg9w4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALF7Xv4gGgL6TH6K/v0/Av31ZSL5TgWA/fzLEvzewKz+h7Ia/wUDevrNF6T7i8Mg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC/Osc+wxmzvCD3Dj8U2lU7mbtnu0TjCTy/Osc+wxmzvCD3Dj8U2lU7mbtnu0TjCTy/Osc+wxmzvCD3Dj8U2lU7mbtnu0TjCTy/Osc+wxmzvCD3Dj8U2lU7mbtnu0TjCTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.38912007 -0.02186287 0.5584583 ]\n [ 0.38912007 -0.02186287 0.5584583 ]\n [ 0.38912007 -0.02186287 0.5584583 ]\n [ 0.38912007 -0.02186287 0.5584583 ]]",
|
60 |
+
"desired_goal": "[[-1.6825614 -0.25004983 -1.2665886 ]\n [-1.5024337 -0.19565387 0.87697333]\n [-1.532791 0.6706576 -1.0540963 ]\n [-0.43408778 0.4556099 1.5698512 ]]",
|
61 |
+
"observation": "[[ 0.38912007 -0.02186287 0.5584583 0.00326312 -0.00353596 0.008416 ]\n [ 0.38912007 -0.02186287 0.5584583 0.00326312 -0.00353596 0.008416 ]\n [ 0.38912007 -0.02186287 0.5584583 0.00326312 -0.00353596 0.008416 ]\n [ 0.38912007 -0.02186287 0.5584583 0.00326312 -0.00353596 0.008416 ]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOCj7PYNsXD2tA4Y+LbCMvXOccTz2+D0+oOgSvfTZFT0akoM+240Mvscxq720dyo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.1226353 0.05381442 0.2617468 ]\n [-0.0686954 0.01474677 0.18552002]\n [-0.03586638 0.03658481 0.25697404]\n [-0.13725989 -0.08359104 0.16647226]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITn6LTpaa8b+UhpRSlIwBbJRLMowBdJRHQKe1NX0XgtR1fZQoaAZoCWgPQwhSYWwhyEHpv5SGlFKUaBVLMmgWR0CntPPn0TURdX2UKGgGaAloD0MI2PLK9bYZ5b+UhpRSlGgVSzJoFkdAp7S0vRJEpnV9lChoBmgJaA9DCPHydK4opeS/lIaUUpRoFUsyaBZHQKe0cWrwOON1fZQoaAZoCWgPQwjTEiujkc/qv5SGlFKUaBVLMmgWR0CntjfIS13MdX2UKGgGaAloD0MImWclrfiG77+UhpRSlGgVSzJoFkdAp7X2KKpDNXV9lChoBmgJaA9DCPyLoDGTKPu/lIaUUpRoFUsyaBZHQKe1twuM+/x1fZQoaAZoCWgPQwiughjo2hfnv5SGlFKUaBVLMmgWR0CntXOP/7zkdX2UKGgGaAloD0MIorjjTX4L8L+UhpRSlGgVSzJoFkdAp7dsbYK6WnV9lChoBmgJaA9DCLlUpS2uceO/lIaUUpRoFUsyaBZHQKe3KvOhTOx1fZQoaAZoCWgPQwiopiTrcHTdv5SGlFKUaBVLMmgWR0CntuvTw2ETdX2UKGgGaAloD0MIzeodboeG6L+UhpRSlGgVSzJoFkdAp7aolhPTHHV9lChoBmgJaA9DCLaeIRyz7N6/lIaUUpRoFUsyaBZHQKe4cuoxYaJ1fZQoaAZoCWgPQwhHx9XIrjTyv5SGlFKUaBVLMmgWR0CnuDFO45LidX2UKGgGaAloD0MICJEMObae3r+UhpRSlGgVSzJoFkdAp7fx37k4m3V9lChoBmgJaA9DCIv9ZffkYeG/lIaUUpRoFUsyaBZHQKe3rr2xptd1fZQoaAZoCWgPQwjSw9Dq5Izqv5SGlFKUaBVLMmgWR0CnuX9aMaS+dX2UKGgGaAloD0MIRN5y9WMT4L+UhpRSlGgVSzJoFkdAp7k9uLrHEXV9lChoBmgJaA9DCDSGOUGbHO+/lIaUUpRoFUsyaBZHQKe4/p0OmSB1fZQoaAZoCWgPQwi4QILix5jqv5SGlFKUaBVLMmgWR0CnuLtU4rBkdX2UKGgGaAloD0MIYwrWOJuO7b+UhpRSlGgVSzJoFkdAp7qZA0Kqn3V9lChoBmgJaA9DCOC7zRsnhei/lIaUUpRoFUsyaBZHQKe6V3NcGC91fZQoaAZoCWgPQwgglzjyQCTwv5SGlFKUaBVLMmgWR0Cnuhhl+VkddX2UKGgGaAloD0MI7gp9sIyN4b+UhpRSlGgVSzJoFkdAp7nVFa0Qb3V9lChoBmgJaA9DCJ4nnrMFBPG/lIaUUpRoFUsyaBZHQKe7p6Fdszl1fZQoaAZoCWgPQwg3ixcLQ+Tfv5SGlFKUaBVLMmgWR0Cnu2YOlO45dX2UKGgGaAloD0MIAALWql2T77+UhpRSlGgVSzJoFkdAp7sm2/i5u3V9lChoBmgJaA9DCFIoC19f6+W/lIaUUpRoFUsyaBZHQKe645MDfWN1fZQoaAZoCWgPQwizYU1lUdjuv5SGlFKUaBVLMmgWR0CnvLCAMDwIdX2UKGgGaAloD0MIZVWEm4wq7b+UhpRSlGgVSzJoFkdAp7xu63AmA3V9lChoBmgJaA9DCFQcB14td+q/lIaUUpRoFUsyaBZHQKe8L9fkWAR1fZQoaAZoCWgPQwhjl6jeGljvv5SGlFKUaBVLMmgWR0Cnu+yAH3UQdX2UKGgGaAloD0MIvVErTN9r3b+UhpRSlGgVSzJoFkdAp72//YJ3PnV9lChoBmgJaA9DCM1y2eicn/G/lIaUUpRoFUsyaBZHQKe9fmCiAUd1fZQoaAZoCWgPQwja/pWVJqXtv5SGlFKUaBVLMmgWR0CnvT8/2TPjdX2UKGgGaAloD0MIaw97oYBt5b+UhpRSlGgVSzJoFkdAp7z7+xW1dHV9lChoBmgJaA9DCOYHrvIEwt6/lIaUUpRoFUsyaBZHQKe+yyxA0Kt1fZQoaAZoCWgPQwjcnEoGgKrlv5SGlFKUaBVLMmgWR0CnvonD7655dX2UKGgGaAloD0MI6zcT04VY2L+UhpRSlGgVSzJoFkdAp75Kp1ie/nV9lChoBmgJaA9DCI/GoX4Xtua/lIaUUpRoFUsyaBZHQKe+B2Cdz4l1fZQoaAZoCWgPQwhz843onnXiv5SGlFKUaBVLMmgWR0Cnv+9m6GxmdX2UKGgGaAloD0MIkx6GVidn6b+UhpRSlGgVSzJoFkdAp7+t5jYqXnV9lChoBmgJaA9DCJfl6zL8p/O/lIaUUpRoFUsyaBZHQKe/b50KZ2J1fZQoaAZoCWgPQwibc/BMaBLyv5SGlFKUaBVLMmgWR0Cnvyw+EAYIdX2UKGgGaAloD0MIBDxp4bIK37+UhpRSlGgVSzJoFkdAp8D3Xbuc+nV9lChoBmgJaA9DCI+NQLyuX92/lIaUUpRoFUsyaBZHQKfAtcN6PbR1fZQoaAZoCWgPQwg5nWSry6njv5SGlFKUaBVLMmgWR0CnwHakyk9EdX2UKGgGaAloD0MIPx2PGagM5r+UhpRSlGgVSzJoFkdAp8AzbWVeKXV9lChoBmgJaA9DCGoX00z3Ouu/lIaUUpRoFUsyaBZHQKfCFy1eBxx1fZQoaAZoCWgPQwg0uRgD6zjWv5SGlFKUaBVLMmgWR0CnwdWPtD2KdX2UKGgGaAloD0MItydIbHcP6r+UhpRSlGgVSzJoFkdAp8GXJHRTj3V9lChoBmgJaA9DCGdkkLsIU9S/lIaUUpRoFUsyaBZHQKfBU9X9zfd1fZQoaAZoCWgPQwgAqyNHOoPgv5SGlFKUaBVLMmgWR0CnwxzZg5R1dX2UKGgGaAloD0MIatyb3zDR8b+UhpRSlGgVSzJoFkdAp8LbP+n623V9lChoBmgJaA9DCI2ar5KP3eC/lIaUUpRoFUsyaBZHQKfCnCHARCh1fZQoaAZoCWgPQwhn1lJA2v/wv5SGlFKUaBVLMmgWR0CnwljMeOn3dX2UKGgGaAloD0MItTLhl/p53r+UhpRSlGgVSzJoFkdAp8RLrX18LXV9lChoBmgJaA9DCCQO2UC62Nq/lIaUUpRoFUsyaBZHQKfECxBVuJl1fZQoaAZoCWgPQwiDNGPRdPbhv5SGlFKUaBVLMmgWR0Cnw8y9du50dX2UKGgGaAloD0MI9TC0OjlD1b+UhpRSlGgVSzJoFkdAp8OKRr8BMnV9lChoBmgJaA9DCAsm/ijqzOu/lIaUUpRoFUsyaBZHQKfGBg4Otnx1fZQoaAZoCWgPQwg164zvi0vqv5SGlFKUaBVLMmgWR0CnxcVMmF8HdX2UKGgGaAloD0MIsfm4NlSM5b+UhpRSlGgVSzJoFkdAp8WG7FsHjnV9lChoBmgJaA9DCJT43An23+e/lIaUUpRoFUsyaBZHQKfFRHNorWl1fZQoaAZoCWgPQwi3YKku4GXfv5SGlFKUaBVLMmgWR0Cnx8tcnmaIdX2UKGgGaAloD0MIWrkXmBXK87+UhpRSlGgVSzJoFkdAp8eKi48U23V9lChoBmgJaA9DCPDErBdDefG/lIaUUpRoFUsyaBZHQKfHTIPK+zt1fZQoaAZoCWgPQwg1JO6x9CHnv5SGlFKUaBVLMmgWR0CnxwptBOYZdX2UKGgGaAloD0MIObaeIRwz6r+UhpRSlGgVSzJoFkdAp8mPssxwhnV9lChoBmgJaA9DCEDZlCu8S/a/lIaUUpRoFUsyaBZHQKfJT3os7Mh1fZQoaAZoCWgPQwgeiZenc0Xov5SGlFKUaBVLMmgWR0CnyRFPSDywdX2UKGgGaAloD0MI5CzsaYc/4b+UhpRSlGgVSzJoFkdAp8jOzUqhDnV9lChoBmgJaA9DCOtTjsnifuq/lIaUUpRoFUsyaBZHQKfLVlbu+h51fZQoaAZoCWgPQwhHj9/b9Ofmv5SGlFKUaBVLMmgWR0CnyxXHzYmLdX2UKGgGaAloD0MI+6wyU1r/5r+UhpRSlGgVSzJoFkdAp8rXkT6BRXV9lChoBmgJaA9DCObOTDCca+K/lIaUUpRoFUsyaBZHQKfKlYK6WgR1fZQoaAZoCWgPQwiqRxrc1hbjv5SGlFKUaBVLMmgWR0CnzPKhDgIhdX2UKGgGaAloD0MI0o4bfjdd4L+UhpRSlGgVSzJoFkdAp8yxA2Q4j3V9lChoBmgJaA9DCDOny2Ji89K/lIaUUpRoFUsyaBZHQKfMcdI5HVh1fZQoaAZoCWgPQwhMiSR6GcXnv5SGlFKUaBVLMmgWR0CnzC60Y0l7dX2UKGgGaAloD0MIRSkhWFWv5r+UhpRSlGgVSzJoFkdAp84SqdYnv3V9lChoBmgJaA9DCHRGlPYGX+O/lIaUUpRoFUsyaBZHQKfN0QfZElV1fZQoaAZoCWgPQwh6Nqs+V1vwv5SGlFKUaBVLMmgWR0CnzZIAn2IwdX2UKGgGaAloD0MIYMyWrIrw67+UhpRSlGgVSzJoFkdAp81OxdIGyHV9lChoBmgJaA9DCFPqknGMZOm/lIaUUpRoFUsyaBZHQKfPYpXp4bF1fZQoaAZoCWgPQwiJX7GGi1ziv5SGlFKUaBVLMmgWR0CnzyHE/B3zdX2UKGgGaAloD0MIPE7RkVz+6r+UhpRSlGgVSzJoFkdAp87jhxYJV3V9lChoBmgJaA9DCKW8VkJ3SeG/lIaUUpRoFUsyaBZHQKfOoYlY2bZ1fZQoaAZoCWgPQwhdbcX+svvgv5SGlFKUaBVLMmgWR0Cn0RdKEnLJdX2UKGgGaAloD0MIJCh+jLnr4r+UhpRSlGgVSzJoFkdAp9DWilBQenV9lChoBmgJaA9DCBsrMc9KWuu/lIaUUpRoFUsyaBZHQKfQmDe0ojR1fZQoaAZoCWgPQwgmcyzvqgfTv5SGlFKUaBVLMmgWR0Cn0FXWFvhqdX2UKGgGaAloD0MIz6EMVTEV4L+UhpRSlGgVSzJoFkdAp9LfMEA5rHV9lChoBmgJaA9DCL6G4LiMG+a/lIaUUpRoFUsyaBZHQKfSnhz/6wd1fZQoaAZoCWgPQwgNwtzu5b7lv5SGlFKUaBVLMmgWR0Cn0l+4kNWmdX2UKGgGaAloD0MI/5JUppiD3L+UhpRSlGgVSzJoFkdAp9IdVR1ox3V9lChoBmgJaA9DCLubpzrkZuW/lIaUUpRoFUsyaBZHQKfU6ZssQNF1fZQoaAZoCWgPQwgeUDblCu/sv5SGlFKUaBVLMmgWR0Cn1Kkl/pdKdX2UKGgGaAloD0MIOZhNgGH53L+UhpRSlGgVSzJoFkdAp9Rq3I+4b3V9lChoBmgJaA9DCJPGaB1VzeK/lIaUUpRoFUsyaBZHQKfUKHE/B311ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
85 |
},
|
86 |
"_n_updates": 50000,
|
87 |
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
90 |
"ent_coef": 0.0,
|
91 |
"vf_coef": 0.5,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec2bc3486f7f5a55c98939992fbaf93e805864fa0dacb71a7d535abb5ae96369
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9356254f2a6f2eed4b944e00b786732aed8749a4e1489aed70ea5b26f2612436
|
3 |
+
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcd39d761f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcd39df3c40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVqgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/f///4wIbmV0X2FyY2iUXZQoTZABTSwBZYwPb3B0aW1pemVyX2NsYXNzlIwTdG9yY2gub3B0aW0ucm1zcHJvcJSMB1JNU3Byb3CUk5SMEG9wdGltaXplcl9rd2FyZ3OUfZQojAVhbHBoYZRHP++uFHrhR66MA2Vwc5RHPuT4tYjjaPGMDHdlaWdodF9kZWNheZRLAHV1Lg==", "log_std_init": -3, "net_arch": [400, 300], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678301932140524787, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACBAVP8wcd73eLla9CBAVP8wcd73eLla9CBAVP8wcd73eLla9CBAVP8wcd73eLla9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7KXGP9Qy3D+FHcK/euRGPZn0yb+OWiw/+XMGv+IghL+Q03O+vDoXPetFnb+Tld2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAIEBU/zBx3vd4uVr24rKM+z7hovUQRjzwIEBU/zBx3vd4uVr24rKM+z7hovUQRjzwIEBU/zBx3vd4uVr24rKM+z7hovUQRjzwIEBU/zBx3vd4uVr24rKM+z7hovUQRjzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.58227587 -0.0603302 -0.05229079]\n [ 0.58227587 -0.0603302 -0.05229079]\n [ 0.58227587 -0.0603302 -0.05229079]\n [ 0.58227587 -0.0603302 -0.05229079]]", "desired_goal": "[[ 1.5519385 1.7203012 -1.5165259 ]\n [ 0.04855774 -1.577777 0.67325675]\n [-0.5252071 -1.0322535 -0.23811173]\n [ 0.03692125 -1.2286962 -1.7311271 ]]", "observation": "[[ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]\n [ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]\n [ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]\n [ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKAgEPu69E75fScg9m9zavAxe9j2tEqc9E58Avv1UEL7wNSM91mE5PWYLBj6Ah5A+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12893736 -0.14427921 0.09779619]\n [-0.02671652 0.12029657 0.08157859]\n [-0.12560682 -0.1409492 0.03984636]\n [ 0.04525932 0.13090286 0.28228378]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHM9nQL1NOcCUhpRSlIwBbJRLMowBdJRHQKsnzOxjawl1fZQoaAZoCWgPQwhKmGn7V/46wJSGlFKUaBVLMmgWR0CrJ3nivPkadX2UKGgGaAloD0MIsRh1rb1nN8CUhpRSlGgVSzJoFkdAqycmBreqJnV9lChoBmgJaA9DCAUYlj/fzjnAlIaUUpRoFUsyaBZHQKsm1HZsbed1fZQoaAZoCWgPQwjxEMZP46YywJSGlFKUaBVLMmgWR0CrKPI5ggHNdX2UKGgGaAloD0MIH/ZCAdsFMsCUhpRSlGgVSzJoFkdAqyifN1QqJHV9lChoBmgJaA9DCGO1+X/V6TPAlIaUUpRoFUsyaBZHQKsoSzollbx1fZQoaAZoCWgPQwgEVg4tsi08wJSGlFKUaBVLMmgWR0CrJ/m1YyO8dX2UKGgGaAloD0MIHY6u0t11OcCUhpRSlGgVSzJoFkdAqyoYiml67nV9lChoBmgJaA9DCBBc5QmEfTzAlIaUUpRoFUsyaBZHQKspxZs9B8h1fZQoaAZoCWgPQwjuef60USk2wJSGlFKUaBVLMmgWR0CrKXGmk30gdX2UKGgGaAloD0MI4J7nTxvBPcCUhpRSlGgVSzJoFkdAqykgLiMo+nV9lChoBmgJaA9DCJeuYBvxyDjAlIaUUpRoFUsyaBZHQKsrOxcmjTN1fZQoaAZoCWgPQwg3VffI5i47wJSGlFKUaBVLMmgWR0CrKugn2IwedX2UKGgGaAloD0MIGckeoWbgMcCUhpRSlGgVSzJoFkdAqyqUOXmeUnV9lChoBmgJaA9DCKpIhbGFgDvAlIaUUpRoFUsyaBZHQKsqQsEJSix1fZQoaAZoCWgPQwiQ9GkV/TU7wJSGlFKUaBVLMmgWR0CrLGQqqfe2dX2UKGgGaAloD0MIARk6dlA5OcCUhpRSlGgVSzJoFkdAqywROclPanV9lChoBmgJaA9DCNCzWfW5OjXAlIaUUpRoFUsyaBZHQKsrvUsFt9B1fZQoaAZoCWgPQwjThy6ob8ExwJSGlFKUaBVLMmgWR0CrK2vkili0dX2UKGgGaAloD0MIQuvhy0T5M8CUhpRSlGgVSzJoFkdAqy2SBVdX1nV9lChoBmgJaA9DCG4zFeKR6DTAlIaUUpRoFUsyaBZHQKstPwqiGnJ1fZQoaAZoCWgPQwjE0VW6u9o4wJSGlFKUaBVLMmgWR0CrLOstsenydX2UKGgGaAloD0MIYvNxbahsOcCUhpRSlGgVSzJoFkdAqyyZ2KVIJHV9lChoBmgJaA9DCNcXCW05qznAlIaUUpRoFUsyaBZHQKsuu5oXbdt1fZQoaAZoCWgPQwg49YHkneM7wJSGlFKUaBVLMmgWR0CrLmi7K7qZdX2UKGgGaAloD0MI1sVtNICPOMCUhpRSlGgVSzJoFkdAqy4U1yeZonV9lChoBmgJaA9DCCgPC7WmOTzAlIaUUpRoFUsyaBZHQKstw1dgOSZ1fZQoaAZoCWgPQwizCTAsf3I2wJSGlFKUaBVLMmgWR0CrL+fu1F6SdX2UKGgGaAloD0MIU8vW+iLBNMCUhpRSlGgVSzJoFkdAqy+VJ4B3inV9lChoBmgJaA9DCGQjEK/rrzbAlIaUUpRoFUsyaBZHQKsvQTOgQH11fZQoaAZoCWgPQwi2n4zxYSI2wJSGlFKUaBVLMmgWR0CrLu/LkjoqdX2UKGgGaAloD0MIzeSbbW4QOsCUhpRSlGgVSzJoFkdAqzGHeP7vX3V9lChoBmgJaA9DCJKVXwZjfDLAlIaUUpRoFUsyaBZHQKsxNTnaFmF1fZQoaAZoCWgPQwjhlo+kpAs5wJSGlFKUaBVLMmgWR0CrMOISlFc6dX2UKGgGaAloD0MIEOz4LxAcMMCUhpRSlGgVSzJoFkdAqzCRUaQ3gnV9lChoBmgJaA9DCAZM4NbdBDjAlIaUUpRoFUsyaBZHQKszZwlSjxl1fZQoaAZoCWgPQwgrvwzGiOwzwJSGlFKUaBVLMmgWR0CrMxTMRpUQdX2UKGgGaAloD0MIn+bkRSbQNsCUhpRSlGgVSzJoFkdAqzLBmoR7JHV9lChoBmgJaA9DCMb4MHvZ9jXAlIaUUpRoFUsyaBZHQKsycPn0TUR1fZQoaAZoCWgPQwjj32dcOJw4wJSGlFKUaBVLMmgWR0CrNVs2m52AdX2UKGgGaAloD0MITdh+MsaTOcCUhpRSlGgVSzJoFkdAqzUJQ1rIo3V9lChoBmgJaA9DCAQAx549kzLAlIaUUpRoFUsyaBZHQKs0tlJYkmh1fZQoaAZoCWgPQwhOKa+V0Dk9wJSGlFKUaBVLMmgWR0CrNGXt0FKTdX2UKGgGaAloD0MI+kFdpFCqNMCUhpRSlGgVSzJoFkdAqzdZ4yGi6HV9lChoBmgJaA9DCNwNorWiHTvAlIaUUpRoFUsyaBZHQKs3B+aScLB1fZQoaAZoCWgPQwjDLR9JSVM0wJSGlFKUaBVLMmgWR0CrNrTySV4YdX2UKGgGaAloD0MIs0P8w5ZyNMCUhpRSlGgVSzJoFkdAqzZkXWOIZnV9lChoBmgJaA9DCB+8dmnDoTvAlIaUUpRoFUsyaBZHQKs5WR0U4711fZQoaAZoCWgPQwhczM8NTZE6wJSGlFKUaBVLMmgWR0CrOQd5prULdX2UKGgGaAloD0MIJy8yAb8CM8CUhpRSlGgVSzJoFkdAqzi0yJsO5XV9lChoBmgJaA9DCH2XUpeMUzPAlIaUUpRoFUsyaBZHQKs4ZIXj2jB1fZQoaAZoCWgPQwi5xJEHIqs1wJSGlFKUaBVLMmgWR0CrOpQWN3nqdX2UKGgGaAloD0MIzVt1Har5OsCUhpRSlGgVSzJoFkdAqzpBJGvwE3V9lChoBmgJaA9DCKp/EMmQezHAlIaUUpRoFUsyaBZHQKs57R51Ng11fZQoaAZoCWgPQwhODTSfcwM4wJSGlFKUaBVLMmgWR0CrOZuiWVu8dX2UKGgGaAloD0MIAVEwYwpONcCUhpRSlGgVSzJoFkdAqzu2qaPS2HV9lChoBmgJaA9DCG3KFd7ljjrAlIaUUpRoFUsyaBZHQKs7Y66J66d1fZQoaAZoCWgPQwjl8EknErA1wJSGlFKUaBVLMmgWR0CrOw/IsAeadX2UKGgGaAloD0MIt/C8VGxsOMCUhpRSlGgVSzJoFkdAqzq+Q2dd3XV9lChoBmgJaA9DCFd6bTZW0jbAlIaUUpRoFUsyaBZHQKs84RV6u4h1fZQoaAZoCWgPQwgo9PqT+GAzwJSGlFKUaBVLMmgWR0CrPI4o7V8UdX2UKGgGaAloD0MIKGVSQxtUM8CUhpRSlGgVSzJoFkdAqzw6NlyzX3V9lChoBmgJaA9DCCuk/KTaMzXAlIaUUpRoFUsyaBZHQKs76L876pJ1fZQoaAZoCWgPQwhkBirj3xs6wJSGlFKUaBVLMmgWR0CrPf7X6InCdX2UKGgGaAloD0MIWg70UNs+PcCUhpRSlGgVSzJoFkdAqz2r1wo9cXV9lChoBmgJaA9DCGPRdHYyhDHAlIaUUpRoFUsyaBZHQKs9V+irT6V1fZQoaAZoCWgPQwiAngYMkmI6wJSGlFKUaBVLMmgWR0CrPQZYYBNmdX2UKGgGaAloD0MIIt+l1CVvNcCUhpRSlGgVSzJoFkdAqz8jKHO8kHV9lChoBmgJaA9DCEXaxp+ovDTAlIaUUpRoFUsyaBZHQKs+0B6rvLJ1fZQoaAZoCWgPQwhRFOgTea4wwJSGlFKUaBVLMmgWR0CrPnwkxASndX2UKGgGaAloD0MIWHA/4IFtOsCUhpRSlGgVSzJoFkdAqz4qkj5bhXV9lChoBmgJaA9DCGNeRxyySTDAlIaUUpRoFUsyaBZHQKtARsVtXPt1fZQoaAZoCWgPQwh9rUuN0Cc0wJSGlFKUaBVLMmgWR0CrP/PP1L8KdX2UKGgGaAloD0MIaF2j5UCjM8CUhpRSlGgVSzJoFkdAqz+f3g1m8XV9lChoBmgJaA9DCM/4vrhUmTnAlIaUUpRoFUsyaBZHQKs/Tk4m1IB1fZQoaAZoCWgPQwjQ0D/BxT41wJSGlFKUaBVLMmgWR0CrQWSAhB7edX2UKGgGaAloD0MIc0hqoWSaOsCUhpRSlGgVSzJoFkdAq0ERgE2YOXV9lChoBmgJaA9DCDlDccebqDPAlIaUUpRoFUsyaBZHQKtAvXyy2QZ1fZQoaAZoCWgPQwhv1uB9VVY+wJSGlFKUaBVLMmgWR0CrQGvykKu0dX2UKGgGaAloD0MIz7wcdt/FOsCUhpRSlGgVSzJoFkdAq0KGGO+7DnV9lChoBmgJaA9DCOp6ouvCkzbAlIaUUpRoFUsyaBZHQKtCMxptaZB1fZQoaAZoCWgPQwgxeJj2zc0vwJSGlFKUaBVLMmgWR0CrQd8RUWEcdX2UKGgGaAloD0MI7fFCOjwENcCUhpRSlGgVSzJoFkdAq0GNjLB9C3V9lChoBmgJaA9DCB2R71LqqjbAlIaUUpRoFUsyaBZHQKtDq60Y0l91fZQoaAZoCWgPQwhRMjm1M0wzwJSGlFKUaBVLMmgWR0CrQ1jA8B+4dX2UKGgGaAloD0MIO1RTknXsNcCUhpRSlGgVSzJoFkdAq0ME0Nz8xnV9lChoBmgJaA9DCBgmUwWjqjLAlIaUUpRoFUsyaBZHQKtCs4G2TgV1fZQoaAZoCWgPQwg2VmKelQg3wJSGlFKUaBVLMmgWR0CrRN7EgntwdX2UKGgGaAloD0MIkSi0rPvrMcCUhpRSlGgVSzJoFkdAq0SL0z0pVnV9lChoBmgJaA9DCGAhc2VQ1TfAlIaUUpRoFUsyaBZHQKtEN+ee4Cp1fZQoaAZoCWgPQwggYK3aNS00wJSGlFKUaBVLMmgWR0CrQ+Z4wAU+dX2UKGgGaAloD0MIzbG8qx6ENsCUhpRSlGgVSzJoFkdAq0X+IKtxMnV9lChoBmgJaA9DCDQQy2YOxTfAlIaUUpRoFUsyaBZHQKtFqyQgcLl1fZQoaAZoCWgPQwjsoX2s4OMwwJSGlFKUaBVLMmgWR0CrRVc4YJmedX2UKGgGaAloD0MIVIuIYvK2PsCUhpRSlGgVSzJoFkdAq0UF5WzWw3V9lChoBmgJaA9DCEZ8J2a9LD3AlIaUUpRoFUsyaBZHQKtHKDZDiOx1fZQoaAZoCWgPQwhivOZVnSk1wJSGlFKUaBVLMmgWR0CrRtU+cH4XdX2UKGgGaAloD0MIjniymxn9OMCUhpRSlGgVSzJoFkdAq0aBWPtD2XV9lChoBmgJaA9DCLmKxW8KRzrAlIaUUpRoFUsyaBZHQKtGL8w5/9Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.98, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcd39d761f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcd39df3c40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678306263794689226, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAvzrHPsMZs7wg9w4/vzrHPsMZs7wg9w4/vzrHPsMZs7wg9w4/vzrHPsMZs7wg9w4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALF7Xv4gGgL6TH6K/v0/Av31ZSL5TgWA/fzLEvzewKz+h7Ia/wUDevrNF6T7i8Mg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC/Osc+wxmzvCD3Dj8U2lU7mbtnu0TjCTy/Osc+wxmzvCD3Dj8U2lU7mbtnu0TjCTy/Osc+wxmzvCD3Dj8U2lU7mbtnu0TjCTy/Osc+wxmzvCD3Dj8U2lU7mbtnu0TjCTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38912007 -0.02186287 0.5584583 ]\n [ 0.38912007 -0.02186287 0.5584583 ]\n [ 0.38912007 -0.02186287 0.5584583 ]\n [ 0.38912007 -0.02186287 0.5584583 ]]", "desired_goal": "[[-1.6825614 -0.25004983 -1.2665886 ]\n [-1.5024337 -0.19565387 0.87697333]\n [-1.532791 0.6706576 -1.0540963 ]\n [-0.43408778 0.4556099 1.5698512 ]]", "observation": "[[ 0.38912007 -0.02186287 0.5584583 0.00326312 -0.00353596 0.008416 ]\n [ 0.38912007 -0.02186287 0.5584583 0.00326312 -0.00353596 0.008416 ]\n [ 0.38912007 -0.02186287 0.5584583 0.00326312 -0.00353596 0.008416 ]\n [ 0.38912007 -0.02186287 0.5584583 0.00326312 -0.00353596 0.008416 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAOCj7PYNsXD2tA4Y+LbCMvXOccTz2+D0+oOgSvfTZFT0akoM+240Mvscxq720dyo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1226353 0.05381442 0.2617468 ]\n [-0.0686954 0.01474677 0.18552002]\n [-0.03586638 0.03658481 0.25697404]\n [-0.13725989 -0.08359104 0.16647226]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITn6LTpaa8b+UhpRSlIwBbJRLMowBdJRHQKe1NX0XgtR1fZQoaAZoCWgPQwhSYWwhyEHpv5SGlFKUaBVLMmgWR0CntPPn0TURdX2UKGgGaAloD0MI2PLK9bYZ5b+UhpRSlGgVSzJoFkdAp7S0vRJEpnV9lChoBmgJaA9DCPHydK4opeS/lIaUUpRoFUsyaBZHQKe0cWrwOON1fZQoaAZoCWgPQwjTEiujkc/qv5SGlFKUaBVLMmgWR0CntjfIS13MdX2UKGgGaAloD0MImWclrfiG77+UhpRSlGgVSzJoFkdAp7X2KKpDNXV9lChoBmgJaA9DCPyLoDGTKPu/lIaUUpRoFUsyaBZHQKe1twuM+/x1fZQoaAZoCWgPQwiughjo2hfnv5SGlFKUaBVLMmgWR0CntXOP/7zkdX2UKGgGaAloD0MIorjjTX4L8L+UhpRSlGgVSzJoFkdAp7dsbYK6WnV9lChoBmgJaA9DCLlUpS2uceO/lIaUUpRoFUsyaBZHQKe3KvOhTOx1fZQoaAZoCWgPQwiopiTrcHTdv5SGlFKUaBVLMmgWR0CntuvTw2ETdX2UKGgGaAloD0MIzeodboeG6L+UhpRSlGgVSzJoFkdAp7aolhPTHHV9lChoBmgJaA9DCLaeIRyz7N6/lIaUUpRoFUsyaBZHQKe4cuoxYaJ1fZQoaAZoCWgPQwhHx9XIrjTyv5SGlFKUaBVLMmgWR0CnuDFO45LidX2UKGgGaAloD0MICJEMObae3r+UhpRSlGgVSzJoFkdAp7fx37k4m3V9lChoBmgJaA9DCIv9ZffkYeG/lIaUUpRoFUsyaBZHQKe3rr2xptd1fZQoaAZoCWgPQwjSw9Dq5Izqv5SGlFKUaBVLMmgWR0CnuX9aMaS+dX2UKGgGaAloD0MIRN5y9WMT4L+UhpRSlGgVSzJoFkdAp7k9uLrHEXV9lChoBmgJaA9DCDSGOUGbHO+/lIaUUpRoFUsyaBZHQKe4/p0OmSB1fZQoaAZoCWgPQwi4QILix5jqv5SGlFKUaBVLMmgWR0CnuLtU4rBkdX2UKGgGaAloD0MIYwrWOJuO7b+UhpRSlGgVSzJoFkdAp7qZA0Kqn3V9lChoBmgJaA9DCOC7zRsnhei/lIaUUpRoFUsyaBZHQKe6V3NcGC91fZQoaAZoCWgPQwgglzjyQCTwv5SGlFKUaBVLMmgWR0Cnuhhl+VkddX2UKGgGaAloD0MI7gp9sIyN4b+UhpRSlGgVSzJoFkdAp7nVFa0Qb3V9lChoBmgJaA9DCJ4nnrMFBPG/lIaUUpRoFUsyaBZHQKe7p6Fdszl1fZQoaAZoCWgPQwg3ixcLQ+Tfv5SGlFKUaBVLMmgWR0Cnu2YOlO45dX2UKGgGaAloD0MIAALWql2T77+UhpRSlGgVSzJoFkdAp7sm2/i5u3V9lChoBmgJaA9DCFIoC19f6+W/lIaUUpRoFUsyaBZHQKe645MDfWN1fZQoaAZoCWgPQwizYU1lUdjuv5SGlFKUaBVLMmgWR0CnvLCAMDwIdX2UKGgGaAloD0MIZVWEm4wq7b+UhpRSlGgVSzJoFkdAp7xu63AmA3V9lChoBmgJaA9DCFQcB14td+q/lIaUUpRoFUsyaBZHQKe8L9fkWAR1fZQoaAZoCWgPQwhjl6jeGljvv5SGlFKUaBVLMmgWR0Cnu+yAH3UQdX2UKGgGaAloD0MIvVErTN9r3b+UhpRSlGgVSzJoFkdAp72//YJ3PnV9lChoBmgJaA9DCM1y2eicn/G/lIaUUpRoFUsyaBZHQKe9fmCiAUd1fZQoaAZoCWgPQwja/pWVJqXtv5SGlFKUaBVLMmgWR0CnvT8/2TPjdX2UKGgGaAloD0MIaw97oYBt5b+UhpRSlGgVSzJoFkdAp7z7+xW1dHV9lChoBmgJaA9DCOYHrvIEwt6/lIaUUpRoFUsyaBZHQKe+yyxA0Kt1fZQoaAZoCWgPQwjcnEoGgKrlv5SGlFKUaBVLMmgWR0CnvonD7655dX2UKGgGaAloD0MI6zcT04VY2L+UhpRSlGgVSzJoFkdAp75Kp1ie/nV9lChoBmgJaA9DCI/GoX4Xtua/lIaUUpRoFUsyaBZHQKe+B2Cdz4l1fZQoaAZoCWgPQwhz843onnXiv5SGlFKUaBVLMmgWR0Cnv+9m6GxmdX2UKGgGaAloD0MIkx6GVidn6b+UhpRSlGgVSzJoFkdAp7+t5jYqXnV9lChoBmgJaA9DCJfl6zL8p/O/lIaUUpRoFUsyaBZHQKe/b50KZ2J1fZQoaAZoCWgPQwibc/BMaBLyv5SGlFKUaBVLMmgWR0Cnvyw+EAYIdX2UKGgGaAloD0MIBDxp4bIK37+UhpRSlGgVSzJoFkdAp8D3Xbuc+nV9lChoBmgJaA9DCI+NQLyuX92/lIaUUpRoFUsyaBZHQKfAtcN6PbR1fZQoaAZoCWgPQwg5nWSry6njv5SGlFKUaBVLMmgWR0CnwHakyk9EdX2UKGgGaAloD0MIPx2PGagM5r+UhpRSlGgVSzJoFkdAp8AzbWVeKXV9lChoBmgJaA9DCGoX00z3Ouu/lIaUUpRoFUsyaBZHQKfCFy1eBxx1fZQoaAZoCWgPQwg0uRgD6zjWv5SGlFKUaBVLMmgWR0CnwdWPtD2KdX2UKGgGaAloD0MItydIbHcP6r+UhpRSlGgVSzJoFkdAp8GXJHRTj3V9lChoBmgJaA9DCGdkkLsIU9S/lIaUUpRoFUsyaBZHQKfBU9X9zfd1fZQoaAZoCWgPQwgAqyNHOoPgv5SGlFKUaBVLMmgWR0CnwxzZg5R1dX2UKGgGaAloD0MIatyb3zDR8b+UhpRSlGgVSzJoFkdAp8LbP+n623V9lChoBmgJaA9DCI2ar5KP3eC/lIaUUpRoFUsyaBZHQKfCnCHARCh1fZQoaAZoCWgPQwhn1lJA2v/wv5SGlFKUaBVLMmgWR0CnwljMeOn3dX2UKGgGaAloD0MItTLhl/p53r+UhpRSlGgVSzJoFkdAp8RLrX18LXV9lChoBmgJaA9DCCQO2UC62Nq/lIaUUpRoFUsyaBZHQKfECxBVuJl1fZQoaAZoCWgPQwiDNGPRdPbhv5SGlFKUaBVLMmgWR0Cnw8y9du50dX2UKGgGaAloD0MI9TC0OjlD1b+UhpRSlGgVSzJoFkdAp8OKRr8BMnV9lChoBmgJaA9DCAsm/ijqzOu/lIaUUpRoFUsyaBZHQKfGBg4Otnx1fZQoaAZoCWgPQwg164zvi0vqv5SGlFKUaBVLMmgWR0CnxcVMmF8HdX2UKGgGaAloD0MIsfm4NlSM5b+UhpRSlGgVSzJoFkdAp8WG7FsHjnV9lChoBmgJaA9DCJT43An23+e/lIaUUpRoFUsyaBZHQKfFRHNorWl1fZQoaAZoCWgPQwi3YKku4GXfv5SGlFKUaBVLMmgWR0Cnx8tcnmaIdX2UKGgGaAloD0MIWrkXmBXK87+UhpRSlGgVSzJoFkdAp8eKi48U23V9lChoBmgJaA9DCPDErBdDefG/lIaUUpRoFUsyaBZHQKfHTIPK+zt1fZQoaAZoCWgPQwg1JO6x9CHnv5SGlFKUaBVLMmgWR0CnxwptBOYZdX2UKGgGaAloD0MIObaeIRwz6r+UhpRSlGgVSzJoFkdAp8mPssxwhnV9lChoBmgJaA9DCEDZlCu8S/a/lIaUUpRoFUsyaBZHQKfJT3os7Mh1fZQoaAZoCWgPQwgeiZenc0Xov5SGlFKUaBVLMmgWR0CnyRFPSDywdX2UKGgGaAloD0MI5CzsaYc/4b+UhpRSlGgVSzJoFkdAp8jOzUqhDnV9lChoBmgJaA9DCOtTjsnifuq/lIaUUpRoFUsyaBZHQKfLVlbu+h51fZQoaAZoCWgPQwhHj9/b9Ofmv5SGlFKUaBVLMmgWR0CnyxXHzYmLdX2UKGgGaAloD0MI+6wyU1r/5r+UhpRSlGgVSzJoFkdAp8rXkT6BRXV9lChoBmgJaA9DCObOTDCca+K/lIaUUpRoFUsyaBZHQKfKlYK6WgR1fZQoaAZoCWgPQwiqRxrc1hbjv5SGlFKUaBVLMmgWR0CnzPKhDgIhdX2UKGgGaAloD0MI0o4bfjdd4L+UhpRSlGgVSzJoFkdAp8yxA2Q4j3V9lChoBmgJaA9DCDOny2Ji89K/lIaUUpRoFUsyaBZHQKfMcdI5HVh1fZQoaAZoCWgPQwhMiSR6GcXnv5SGlFKUaBVLMmgWR0CnzC60Y0l7dX2UKGgGaAloD0MIRSkhWFWv5r+UhpRSlGgVSzJoFkdAp84SqdYnv3V9lChoBmgJaA9DCHRGlPYGX+O/lIaUUpRoFUsyaBZHQKfN0QfZElV1fZQoaAZoCWgPQwh6Nqs+V1vwv5SGlFKUaBVLMmgWR0CnzZIAn2IwdX2UKGgGaAloD0MIYMyWrIrw67+UhpRSlGgVSzJoFkdAp81OxdIGyHV9lChoBmgJaA9DCFPqknGMZOm/lIaUUpRoFUsyaBZHQKfPYpXp4bF1fZQoaAZoCWgPQwiJX7GGi1ziv5SGlFKUaBVLMmgWR0CnzyHE/B3zdX2UKGgGaAloD0MIPE7RkVz+6r+UhpRSlGgVSzJoFkdAp87jhxYJV3V9lChoBmgJaA9DCKW8VkJ3SeG/lIaUUpRoFUsyaBZHQKfOoYlY2bZ1fZQoaAZoCWgPQwhdbcX+svvgv5SGlFKUaBVLMmgWR0Cn0RdKEnLJdX2UKGgGaAloD0MIJCh+jLnr4r+UhpRSlGgVSzJoFkdAp9DWilBQenV9lChoBmgJaA9DCBsrMc9KWuu/lIaUUpRoFUsyaBZHQKfQmDe0ojR1fZQoaAZoCWgPQwgmcyzvqgfTv5SGlFKUaBVLMmgWR0Cn0FXWFvhqdX2UKGgGaAloD0MIz6EMVTEV4L+UhpRSlGgVSzJoFkdAp9LfMEA5rHV9lChoBmgJaA9DCL6G4LiMG+a/lIaUUpRoFUsyaBZHQKfSnhz/6wd1fZQoaAZoCWgPQwgNwtzu5b7lv5SGlFKUaBVLMmgWR0Cn0l+4kNWmdX2UKGgGaAloD0MI/5JUppiD3L+UhpRSlGgVSzJoFkdAp9IdVR1ox3V9lChoBmgJaA9DCLubpzrkZuW/lIaUUpRoFUsyaBZHQKfU6ZssQNF1fZQoaAZoCWgPQwgeUDblCu/sv5SGlFKUaBVLMmgWR0Cn1Kkl/pdKdX2UKGgGaAloD0MIOZhNgGH53L+UhpRSlGgVSzJoFkdAp9Rq3I+4b3V9lChoBmgJaA9DCJPGaB1VzeK/lIaUUpRoFUsyaBZHQKfUKHE/B311ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.6183058079972398, "std_reward": 0.22669096880097048, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T21:04:55.457335"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9691d3a0f8b0fffe3f0a9845ad03b5a1e1ad641a6c8c05d4bd21a5c63fe8a93b
|
3 |
size 3056
|