Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +99 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -24.68 +/- 2.12
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fe61e130b5c2958dbbca1e21e8f98437b686a0d0cce8f4506c57f6e10b292ab
|
3 |
+
size 1037804
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcd39d761f0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fcd39df3c40>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVqgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/f///4wIbmV0X2FyY2iUXZQoTZABTSwBZYwPb3B0aW1pemVyX2NsYXNzlIwTdG9yY2gub3B0aW0ucm1zcHJvcJSMB1JNU3Byb3CUk5SMEG9wdGltaXplcl9rd2FyZ3OUfZQojAVhbHBoYZRHP++uFHrhR66MA2Vwc5RHPuT4tYjjaPGMDHdlaWdodF9kZWNheZRLAHV1Lg==",
|
15 |
+
"log_std_init": -3,
|
16 |
+
"net_arch": [
|
17 |
+
400,
|
18 |
+
300
|
19 |
+
],
|
20 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
21 |
+
"optimizer_kwargs": {
|
22 |
+
"alpha": 0.99,
|
23 |
+
"eps": 1e-05,
|
24 |
+
"weight_decay": 0
|
25 |
+
}
|
26 |
+
},
|
27 |
+
"observation_space": {
|
28 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
29 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
30 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
31 |
+
"_shape": null,
|
32 |
+
"dtype": null,
|
33 |
+
"_np_random": null
|
34 |
+
},
|
35 |
+
"action_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
3
|
41 |
+
],
|
42 |
+
"low": "[-1. -1. -1.]",
|
43 |
+
"high": "[1. 1. 1.]",
|
44 |
+
"bounded_below": "[ True True True]",
|
45 |
+
"bounded_above": "[ True True True]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"n_envs": 4,
|
49 |
+
"num_timesteps": 1000000,
|
50 |
+
"_total_timesteps": 1000000,
|
51 |
+
"_num_timesteps_at_start": 0,
|
52 |
+
"seed": null,
|
53 |
+
"action_noise": null,
|
54 |
+
"start_time": 1678301932140524787,
|
55 |
+
"learning_rate": 0.0007,
|
56 |
+
"tensorboard_log": null,
|
57 |
+
"lr_schedule": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
60 |
+
},
|
61 |
+
"_last_obs": {
|
62 |
+
":type:": "<class 'collections.OrderedDict'>",
|
63 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACBAVP8wcd73eLla9CBAVP8wcd73eLla9CBAVP8wcd73eLla9CBAVP8wcd73eLla9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7KXGP9Qy3D+FHcK/euRGPZn0yb+OWiw/+XMGv+IghL+Q03O+vDoXPetFnb+Tld2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAIEBU/zBx3vd4uVr24rKM+z7hovUQRjzwIEBU/zBx3vd4uVr24rKM+z7hovUQRjzwIEBU/zBx3vd4uVr24rKM+z7hovUQRjzwIEBU/zBx3vd4uVr24rKM+z7hovUQRjzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
64 |
+
"achieved_goal": "[[ 0.58227587 -0.0603302 -0.05229079]\n [ 0.58227587 -0.0603302 -0.05229079]\n [ 0.58227587 -0.0603302 -0.05229079]\n [ 0.58227587 -0.0603302 -0.05229079]]",
|
65 |
+
"desired_goal": "[[ 1.5519385 1.7203012 -1.5165259 ]\n [ 0.04855774 -1.577777 0.67325675]\n [-0.5252071 -1.0322535 -0.23811173]\n [ 0.03692125 -1.2286962 -1.7311271 ]]",
|
66 |
+
"observation": "[[ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]\n [ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]\n [ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]\n [ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]]"
|
67 |
+
},
|
68 |
+
"_last_episode_starts": {
|
69 |
+
":type:": "<class 'numpy.ndarray'>",
|
70 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
71 |
+
},
|
72 |
+
"_last_original_obs": {
|
73 |
+
":type:": "<class 'collections.OrderedDict'>",
|
74 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKAgEPu69E75fScg9m9zavAxe9j2tEqc9E58Avv1UEL7wNSM91mE5PWYLBj6Ah5A+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
75 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
76 |
+
"desired_goal": "[[ 0.12893736 -0.14427921 0.09779619]\n [-0.02671652 0.12029657 0.08157859]\n [-0.12560682 -0.1409492 0.03984636]\n [ 0.04525932 0.13090286 0.28228378]]",
|
77 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
78 |
+
},
|
79 |
+
"_episode_num": 0,
|
80 |
+
"use_sde": false,
|
81 |
+
"sde_sample_freq": -1,
|
82 |
+
"_current_progress_remaining": 0.0,
|
83 |
+
"ep_info_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHM9nQL1NOcCUhpRSlIwBbJRLMowBdJRHQKsnzOxjawl1fZQoaAZoCWgPQwhKmGn7V/46wJSGlFKUaBVLMmgWR0CrJ3nivPkadX2UKGgGaAloD0MIsRh1rb1nN8CUhpRSlGgVSzJoFkdAqycmBreqJnV9lChoBmgJaA9DCAUYlj/fzjnAlIaUUpRoFUsyaBZHQKsm1HZsbed1fZQoaAZoCWgPQwjxEMZP46YywJSGlFKUaBVLMmgWR0CrKPI5ggHNdX2UKGgGaAloD0MIH/ZCAdsFMsCUhpRSlGgVSzJoFkdAqyifN1QqJHV9lChoBmgJaA9DCGO1+X/V6TPAlIaUUpRoFUsyaBZHQKsoSzollbx1fZQoaAZoCWgPQwgEVg4tsi08wJSGlFKUaBVLMmgWR0CrJ/m1YyO8dX2UKGgGaAloD0MIHY6u0t11OcCUhpRSlGgVSzJoFkdAqyoYiml67nV9lChoBmgJaA9DCBBc5QmEfTzAlIaUUpRoFUsyaBZHQKspxZs9B8h1fZQoaAZoCWgPQwjuef60USk2wJSGlFKUaBVLMmgWR0CrKXGmk30gdX2UKGgGaAloD0MI4J7nTxvBPcCUhpRSlGgVSzJoFkdAqykgLiMo+nV9lChoBmgJaA9DCJeuYBvxyDjAlIaUUpRoFUsyaBZHQKsrOxcmjTN1fZQoaAZoCWgPQwg3VffI5i47wJSGlFKUaBVLMmgWR0CrKugn2IwedX2UKGgGaAloD0MIGckeoWbgMcCUhpRSlGgVSzJoFkdAqyqUOXmeUnV9lChoBmgJaA9DCKpIhbGFgDvAlIaUUpRoFUsyaBZHQKsqQsEJSix1fZQoaAZoCWgPQwiQ9GkV/TU7wJSGlFKUaBVLMmgWR0CrLGQqqfe2dX2UKGgGaAloD0MIARk6dlA5OcCUhpRSlGgVSzJoFkdAqywROclPanV9lChoBmgJaA9DCNCzWfW5OjXAlIaUUpRoFUsyaBZHQKsrvUsFt9B1fZQoaAZoCWgPQwjThy6ob8ExwJSGlFKUaBVLMmgWR0CrK2vkili0dX2UKGgGaAloD0MIQuvhy0T5M8CUhpRSlGgVSzJoFkdAqy2SBVdX1nV9lChoBmgJaA9DCG4zFeKR6DTAlIaUUpRoFUsyaBZHQKstPwqiGnJ1fZQoaAZoCWgPQwjE0VW6u9o4wJSGlFKUaBVLMmgWR0CrLOstsenydX2UKGgGaAloD0MIYvNxbahsOcCUhpRSlGgVSzJoFkdAqyyZ2KVIJHV9lChoBmgJaA9DCNcXCW05qznAlIaUUpRoFUsyaBZHQKsuu5oXbdt1fZQoaAZoCWgPQwg49YHkneM7wJSGlFKUaBVLMmgWR0CrLmi7K7qZdX2UKGgGaAloD0MI1sVtNICPOMCUhpRSlGgVSzJoFkdAqy4U1yeZonV9lChoBmgJaA9DCCgPC7WmOTzAlIaUUpRoFUsyaBZHQKstw1dgOSZ1fZQoaAZoCWgPQwizCTAsf3I2wJSGlFKUaBVLMmgWR0CrL+fu1F6SdX2UKGgGaAloD0MIU8vW+iLBNMCUhpRSlGgVSzJoFkdAqy+VJ4B3inV9lChoBmgJaA9DCGQjEK/rrzbAlIaUUpRoFUsyaBZHQKsvQTOgQH11fZQoaAZoCWgPQwi2n4zxYSI2wJSGlFKUaBVLMmgWR0CrLu/LkjoqdX2UKGgGaAloD0MIzeSbbW4QOsCUhpRSlGgVSzJoFkdAqzGHeP7vX3V9lChoBmgJaA9DCJKVXwZjfDLAlIaUUpRoFUsyaBZHQKsxNTnaFmF1fZQoaAZoCWgPQwjhlo+kpAs5wJSGlFKUaBVLMmgWR0CrMOISlFc6dX2UKGgGaAloD0MIEOz4LxAcMMCUhpRSlGgVSzJoFkdAqzCRUaQ3gnV9lChoBmgJaA9DCAZM4NbdBDjAlIaUUpRoFUsyaBZHQKszZwlSjxl1fZQoaAZoCWgPQwgrvwzGiOwzwJSGlFKUaBVLMmgWR0CrMxTMRpUQdX2UKGgGaAloD0MIn+bkRSbQNsCUhpRSlGgVSzJoFkdAqzLBmoR7JHV9lChoBmgJaA9DCMb4MHvZ9jXAlIaUUpRoFUsyaBZHQKsycPn0TUR1fZQoaAZoCWgPQwjj32dcOJw4wJSGlFKUaBVLMmgWR0CrNVs2m52AdX2UKGgGaAloD0MITdh+MsaTOcCUhpRSlGgVSzJoFkdAqzUJQ1rIo3V9lChoBmgJaA9DCAQAx549kzLAlIaUUpRoFUsyaBZHQKs0tlJYkmh1fZQoaAZoCWgPQwhOKa+V0Dk9wJSGlFKUaBVLMmgWR0CrNGXt0FKTdX2UKGgGaAloD0MI+kFdpFCqNMCUhpRSlGgVSzJoFkdAqzdZ4yGi6HV9lChoBmgJaA9DCNwNorWiHTvAlIaUUpRoFUsyaBZHQKs3B+aScLB1fZQoaAZoCWgPQwjDLR9JSVM0wJSGlFKUaBVLMmgWR0CrNrTySV4YdX2UKGgGaAloD0MIs0P8w5ZyNMCUhpRSlGgVSzJoFkdAqzZkXWOIZnV9lChoBmgJaA9DCB+8dmnDoTvAlIaUUpRoFUsyaBZHQKs5WR0U4711fZQoaAZoCWgPQwhczM8NTZE6wJSGlFKUaBVLMmgWR0CrOQd5prULdX2UKGgGaAloD0MIJy8yAb8CM8CUhpRSlGgVSzJoFkdAqzi0yJsO5XV9lChoBmgJaA9DCH2XUpeMUzPAlIaUUpRoFUsyaBZHQKs4ZIXj2jB1fZQoaAZoCWgPQwi5xJEHIqs1wJSGlFKUaBVLMmgWR0CrOpQWN3nqdX2UKGgGaAloD0MIzVt1Har5OsCUhpRSlGgVSzJoFkdAqzpBJGvwE3V9lChoBmgJaA9DCKp/EMmQezHAlIaUUpRoFUsyaBZHQKs57R51Ng11fZQoaAZoCWgPQwhODTSfcwM4wJSGlFKUaBVLMmgWR0CrOZuiWVu8dX2UKGgGaAloD0MIAVEwYwpONcCUhpRSlGgVSzJoFkdAqzu2qaPS2HV9lChoBmgJaA9DCG3KFd7ljjrAlIaUUpRoFUsyaBZHQKs7Y66J66d1fZQoaAZoCWgPQwjl8EknErA1wJSGlFKUaBVLMmgWR0CrOw/IsAeadX2UKGgGaAloD0MIt/C8VGxsOMCUhpRSlGgVSzJoFkdAqzq+Q2dd3XV9lChoBmgJaA9DCFd6bTZW0jbAlIaUUpRoFUsyaBZHQKs84RV6u4h1fZQoaAZoCWgPQwgo9PqT+GAzwJSGlFKUaBVLMmgWR0CrPI4o7V8UdX2UKGgGaAloD0MIKGVSQxtUM8CUhpRSlGgVSzJoFkdAqzw6NlyzX3V9lChoBmgJaA9DCCuk/KTaMzXAlIaUUpRoFUsyaBZHQKs76L876pJ1fZQoaAZoCWgPQwhkBirj3xs6wJSGlFKUaBVLMmgWR0CrPf7X6InCdX2UKGgGaAloD0MIWg70UNs+PcCUhpRSlGgVSzJoFkdAqz2r1wo9cXV9lChoBmgJaA9DCGPRdHYyhDHAlIaUUpRoFUsyaBZHQKs9V+irT6V1fZQoaAZoCWgPQwiAngYMkmI6wJSGlFKUaBVLMmgWR0CrPQZYYBNmdX2UKGgGaAloD0MIIt+l1CVvNcCUhpRSlGgVSzJoFkdAqz8jKHO8kHV9lChoBmgJaA9DCEXaxp+ovDTAlIaUUpRoFUsyaBZHQKs+0B6rvLJ1fZQoaAZoCWgPQwhRFOgTea4wwJSGlFKUaBVLMmgWR0CrPnwkxASndX2UKGgGaAloD0MIWHA/4IFtOsCUhpRSlGgVSzJoFkdAqz4qkj5bhXV9lChoBmgJaA9DCGNeRxyySTDAlIaUUpRoFUsyaBZHQKtARsVtXPt1fZQoaAZoCWgPQwh9rUuN0Cc0wJSGlFKUaBVLMmgWR0CrP/PP1L8KdX2UKGgGaAloD0MIaF2j5UCjM8CUhpRSlGgVSzJoFkdAqz+f3g1m8XV9lChoBmgJaA9DCM/4vrhUmTnAlIaUUpRoFUsyaBZHQKs/Tk4m1IB1fZQoaAZoCWgPQwjQ0D/BxT41wJSGlFKUaBVLMmgWR0CrQWSAhB7edX2UKGgGaAloD0MIc0hqoWSaOsCUhpRSlGgVSzJoFkdAq0ERgE2YOXV9lChoBmgJaA9DCDlDccebqDPAlIaUUpRoFUsyaBZHQKtAvXyy2QZ1fZQoaAZoCWgPQwhv1uB9VVY+wJSGlFKUaBVLMmgWR0CrQGvykKu0dX2UKGgGaAloD0MIz7wcdt/FOsCUhpRSlGgVSzJoFkdAq0KGGO+7DnV9lChoBmgJaA9DCOp6ouvCkzbAlIaUUpRoFUsyaBZHQKtCMxptaZB1fZQoaAZoCWgPQwgxeJj2zc0vwJSGlFKUaBVLMmgWR0CrQd8RUWEcdX2UKGgGaAloD0MI7fFCOjwENcCUhpRSlGgVSzJoFkdAq0GNjLB9C3V9lChoBmgJaA9DCB2R71LqqjbAlIaUUpRoFUsyaBZHQKtDq60Y0l91fZQoaAZoCWgPQwhRMjm1M0wzwJSGlFKUaBVLMmgWR0CrQ1jA8B+4dX2UKGgGaAloD0MIO1RTknXsNcCUhpRSlGgVSzJoFkdAq0ME0Nz8xnV9lChoBmgJaA9DCBgmUwWjqjLAlIaUUpRoFUsyaBZHQKtCs4G2TgV1fZQoaAZoCWgPQwg2VmKelQg3wJSGlFKUaBVLMmgWR0CrRN7EgntwdX2UKGgGaAloD0MIkSi0rPvrMcCUhpRSlGgVSzJoFkdAq0SL0z0pVnV9lChoBmgJaA9DCGAhc2VQ1TfAlIaUUpRoFUsyaBZHQKtEN+ee4Cp1fZQoaAZoCWgPQwggYK3aNS00wJSGlFKUaBVLMmgWR0CrQ+Z4wAU+dX2UKGgGaAloD0MIzbG8qx6ENsCUhpRSlGgVSzJoFkdAq0X+IKtxMnV9lChoBmgJaA9DCDQQy2YOxTfAlIaUUpRoFUsyaBZHQKtFqyQgcLl1fZQoaAZoCWgPQwjsoX2s4OMwwJSGlFKUaBVLMmgWR0CrRVc4YJmedX2UKGgGaAloD0MIVIuIYvK2PsCUhpRSlGgVSzJoFkdAq0UF5WzWw3V9lChoBmgJaA9DCEZ8J2a9LD3AlIaUUpRoFUsyaBZHQKtHKDZDiOx1fZQoaAZoCWgPQwhivOZVnSk1wJSGlFKUaBVLMmgWR0CrRtU+cH4XdX2UKGgGaAloD0MIjniymxn9OMCUhpRSlGgVSzJoFkdAq0aBWPtD2XV9lChoBmgJaA9DCLmKxW8KRzrAlIaUUpRoFUsyaBZHQKtGL8w5/9Z1ZS4="
|
86 |
+
},
|
87 |
+
"ep_success_buffer": {
|
88 |
+
":type:": "<class 'collections.deque'>",
|
89 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
90 |
+
},
|
91 |
+
"_n_updates": 50000,
|
92 |
+
"n_steps": 5,
|
93 |
+
"gamma": 0.98,
|
94 |
+
"gae_lambda": 1.0,
|
95 |
+
"ent_coef": 0.0,
|
96 |
+
"vf_coef": 0.5,
|
97 |
+
"max_grad_norm": 0.5,
|
98 |
+
"normalize_advantage": false
|
99 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3cf0e76e380f2751178a55d0f969a896408a6829d49ce566bc4964acf165115
|
3 |
+
size 509643
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dba0e2c80d3ab7ca663a3b86e0835b3b6bfd180c447bad67fa3b3e688de9d82
|
3 |
+
size 510731
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcd39d761f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcd39df3c40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVqgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/f///4wIbmV0X2FyY2iUXZQoTZABTSwBZYwPb3B0aW1pemVyX2NsYXNzlIwTdG9yY2gub3B0aW0ucm1zcHJvcJSMB1JNU3Byb3CUk5SMEG9wdGltaXplcl9rd2FyZ3OUfZQojAVhbHBoYZRHP++uFHrhR66MA2Vwc5RHPuT4tYjjaPGMDHdlaWdodF9kZWNheZRLAHV1Lg==", "log_std_init": -3, "net_arch": [400, 300], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678301932140524787, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACBAVP8wcd73eLla9CBAVP8wcd73eLla9CBAVP8wcd73eLla9CBAVP8wcd73eLla9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7KXGP9Qy3D+FHcK/euRGPZn0yb+OWiw/+XMGv+IghL+Q03O+vDoXPetFnb+Tld2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAIEBU/zBx3vd4uVr24rKM+z7hovUQRjzwIEBU/zBx3vd4uVr24rKM+z7hovUQRjzwIEBU/zBx3vd4uVr24rKM+z7hovUQRjzwIEBU/zBx3vd4uVr24rKM+z7hovUQRjzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.58227587 -0.0603302 -0.05229079]\n [ 0.58227587 -0.0603302 -0.05229079]\n [ 0.58227587 -0.0603302 -0.05229079]\n [ 0.58227587 -0.0603302 -0.05229079]]", "desired_goal": "[[ 1.5519385 1.7203012 -1.5165259 ]\n [ 0.04855774 -1.577777 0.67325675]\n [-0.5252071 -1.0322535 -0.23811173]\n [ 0.03692125 -1.2286962 -1.7311271 ]]", "observation": "[[ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]\n [ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]\n [ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]\n [ 0.58227587 -0.0603302 -0.05229079 0.3196771 -0.05681687 0.01746429]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKAgEPu69E75fScg9m9zavAxe9j2tEqc9E58Avv1UEL7wNSM91mE5PWYLBj6Ah5A+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12893736 -0.14427921 0.09779619]\n [-0.02671652 0.12029657 0.08157859]\n [-0.12560682 -0.1409492 0.03984636]\n [ 0.04525932 0.13090286 0.28228378]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHM9nQL1NOcCUhpRSlIwBbJRLMowBdJRHQKsnzOxjawl1fZQoaAZoCWgPQwhKmGn7V/46wJSGlFKUaBVLMmgWR0CrJ3nivPkadX2UKGgGaAloD0MIsRh1rb1nN8CUhpRSlGgVSzJoFkdAqycmBreqJnV9lChoBmgJaA9DCAUYlj/fzjnAlIaUUpRoFUsyaBZHQKsm1HZsbed1fZQoaAZoCWgPQwjxEMZP46YywJSGlFKUaBVLMmgWR0CrKPI5ggHNdX2UKGgGaAloD0MIH/ZCAdsFMsCUhpRSlGgVSzJoFkdAqyifN1QqJHV9lChoBmgJaA9DCGO1+X/V6TPAlIaUUpRoFUsyaBZHQKsoSzollbx1fZQoaAZoCWgPQwgEVg4tsi08wJSGlFKUaBVLMmgWR0CrJ/m1YyO8dX2UKGgGaAloD0MIHY6u0t11OcCUhpRSlGgVSzJoFkdAqyoYiml67nV9lChoBmgJaA9DCBBc5QmEfTzAlIaUUpRoFUsyaBZHQKspxZs9B8h1fZQoaAZoCWgPQwjuef60USk2wJSGlFKUaBVLMmgWR0CrKXGmk30gdX2UKGgGaAloD0MI4J7nTxvBPcCUhpRSlGgVSzJoFkdAqykgLiMo+nV9lChoBmgJaA9DCJeuYBvxyDjAlIaUUpRoFUsyaBZHQKsrOxcmjTN1fZQoaAZoCWgPQwg3VffI5i47wJSGlFKUaBVLMmgWR0CrKugn2IwedX2UKGgGaAloD0MIGckeoWbgMcCUhpRSlGgVSzJoFkdAqyqUOXmeUnV9lChoBmgJaA9DCKpIhbGFgDvAlIaUUpRoFUsyaBZHQKsqQsEJSix1fZQoaAZoCWgPQwiQ9GkV/TU7wJSGlFKUaBVLMmgWR0CrLGQqqfe2dX2UKGgGaAloD0MIARk6dlA5OcCUhpRSlGgVSzJoFkdAqywROclPanV9lChoBmgJaA9DCNCzWfW5OjXAlIaUUpRoFUsyaBZHQKsrvUsFt9B1fZQoaAZoCWgPQwjThy6ob8ExwJSGlFKUaBVLMmgWR0CrK2vkili0dX2UKGgGaAloD0MIQuvhy0T5M8CUhpRSlGgVSzJoFkdAqy2SBVdX1nV9lChoBmgJaA9DCG4zFeKR6DTAlIaUUpRoFUsyaBZHQKstPwqiGnJ1fZQoaAZoCWgPQwjE0VW6u9o4wJSGlFKUaBVLMmgWR0CrLOstsenydX2UKGgGaAloD0MIYvNxbahsOcCUhpRSlGgVSzJoFkdAqyyZ2KVIJHV9lChoBmgJaA9DCNcXCW05qznAlIaUUpRoFUsyaBZHQKsuu5oXbdt1fZQoaAZoCWgPQwg49YHkneM7wJSGlFKUaBVLMmgWR0CrLmi7K7qZdX2UKGgGaAloD0MI1sVtNICPOMCUhpRSlGgVSzJoFkdAqy4U1yeZonV9lChoBmgJaA9DCCgPC7WmOTzAlIaUUpRoFUsyaBZHQKstw1dgOSZ1fZQoaAZoCWgPQwizCTAsf3I2wJSGlFKUaBVLMmgWR0CrL+fu1F6SdX2UKGgGaAloD0MIU8vW+iLBNMCUhpRSlGgVSzJoFkdAqy+VJ4B3inV9lChoBmgJaA9DCGQjEK/rrzbAlIaUUpRoFUsyaBZHQKsvQTOgQH11fZQoaAZoCWgPQwi2n4zxYSI2wJSGlFKUaBVLMmgWR0CrLu/LkjoqdX2UKGgGaAloD0MIzeSbbW4QOsCUhpRSlGgVSzJoFkdAqzGHeP7vX3V9lChoBmgJaA9DCJKVXwZjfDLAlIaUUpRoFUsyaBZHQKsxNTnaFmF1fZQoaAZoCWgPQwjhlo+kpAs5wJSGlFKUaBVLMmgWR0CrMOISlFc6dX2UKGgGaAloD0MIEOz4LxAcMMCUhpRSlGgVSzJoFkdAqzCRUaQ3gnV9lChoBmgJaA9DCAZM4NbdBDjAlIaUUpRoFUsyaBZHQKszZwlSjxl1fZQoaAZoCWgPQwgrvwzGiOwzwJSGlFKUaBVLMmgWR0CrMxTMRpUQdX2UKGgGaAloD0MIn+bkRSbQNsCUhpRSlGgVSzJoFkdAqzLBmoR7JHV9lChoBmgJaA9DCMb4MHvZ9jXAlIaUUpRoFUsyaBZHQKsycPn0TUR1fZQoaAZoCWgPQwjj32dcOJw4wJSGlFKUaBVLMmgWR0CrNVs2m52AdX2UKGgGaAloD0MITdh+MsaTOcCUhpRSlGgVSzJoFkdAqzUJQ1rIo3V9lChoBmgJaA9DCAQAx549kzLAlIaUUpRoFUsyaBZHQKs0tlJYkmh1fZQoaAZoCWgPQwhOKa+V0Dk9wJSGlFKUaBVLMmgWR0CrNGXt0FKTdX2UKGgGaAloD0MI+kFdpFCqNMCUhpRSlGgVSzJoFkdAqzdZ4yGi6HV9lChoBmgJaA9DCNwNorWiHTvAlIaUUpRoFUsyaBZHQKs3B+aScLB1fZQoaAZoCWgPQwjDLR9JSVM0wJSGlFKUaBVLMmgWR0CrNrTySV4YdX2UKGgGaAloD0MIs0P8w5ZyNMCUhpRSlGgVSzJoFkdAqzZkXWOIZnV9lChoBmgJaA9DCB+8dmnDoTvAlIaUUpRoFUsyaBZHQKs5WR0U4711fZQoaAZoCWgPQwhczM8NTZE6wJSGlFKUaBVLMmgWR0CrOQd5prULdX2UKGgGaAloD0MIJy8yAb8CM8CUhpRSlGgVSzJoFkdAqzi0yJsO5XV9lChoBmgJaA9DCH2XUpeMUzPAlIaUUpRoFUsyaBZHQKs4ZIXj2jB1fZQoaAZoCWgPQwi5xJEHIqs1wJSGlFKUaBVLMmgWR0CrOpQWN3nqdX2UKGgGaAloD0MIzVt1Har5OsCUhpRSlGgVSzJoFkdAqzpBJGvwE3V9lChoBmgJaA9DCKp/EMmQezHAlIaUUpRoFUsyaBZHQKs57R51Ng11fZQoaAZoCWgPQwhODTSfcwM4wJSGlFKUaBVLMmgWR0CrOZuiWVu8dX2UKGgGaAloD0MIAVEwYwpONcCUhpRSlGgVSzJoFkdAqzu2qaPS2HV9lChoBmgJaA9DCG3KFd7ljjrAlIaUUpRoFUsyaBZHQKs7Y66J66d1fZQoaAZoCWgPQwjl8EknErA1wJSGlFKUaBVLMmgWR0CrOw/IsAeadX2UKGgGaAloD0MIt/C8VGxsOMCUhpRSlGgVSzJoFkdAqzq+Q2dd3XV9lChoBmgJaA9DCFd6bTZW0jbAlIaUUpRoFUsyaBZHQKs84RV6u4h1fZQoaAZoCWgPQwgo9PqT+GAzwJSGlFKUaBVLMmgWR0CrPI4o7V8UdX2UKGgGaAloD0MIKGVSQxtUM8CUhpRSlGgVSzJoFkdAqzw6NlyzX3V9lChoBmgJaA9DCCuk/KTaMzXAlIaUUpRoFUsyaBZHQKs76L876pJ1fZQoaAZoCWgPQwhkBirj3xs6wJSGlFKUaBVLMmgWR0CrPf7X6InCdX2UKGgGaAloD0MIWg70UNs+PcCUhpRSlGgVSzJoFkdAqz2r1wo9cXV9lChoBmgJaA9DCGPRdHYyhDHAlIaUUpRoFUsyaBZHQKs9V+irT6V1fZQoaAZoCWgPQwiAngYMkmI6wJSGlFKUaBVLMmgWR0CrPQZYYBNmdX2UKGgGaAloD0MIIt+l1CVvNcCUhpRSlGgVSzJoFkdAqz8jKHO8kHV9lChoBmgJaA9DCEXaxp+ovDTAlIaUUpRoFUsyaBZHQKs+0B6rvLJ1fZQoaAZoCWgPQwhRFOgTea4wwJSGlFKUaBVLMmgWR0CrPnwkxASndX2UKGgGaAloD0MIWHA/4IFtOsCUhpRSlGgVSzJoFkdAqz4qkj5bhXV9lChoBmgJaA9DCGNeRxyySTDAlIaUUpRoFUsyaBZHQKtARsVtXPt1fZQoaAZoCWgPQwh9rUuN0Cc0wJSGlFKUaBVLMmgWR0CrP/PP1L8KdX2UKGgGaAloD0MIaF2j5UCjM8CUhpRSlGgVSzJoFkdAqz+f3g1m8XV9lChoBmgJaA9DCM/4vrhUmTnAlIaUUpRoFUsyaBZHQKs/Tk4m1IB1fZQoaAZoCWgPQwjQ0D/BxT41wJSGlFKUaBVLMmgWR0CrQWSAhB7edX2UKGgGaAloD0MIc0hqoWSaOsCUhpRSlGgVSzJoFkdAq0ERgE2YOXV9lChoBmgJaA9DCDlDccebqDPAlIaUUpRoFUsyaBZHQKtAvXyy2QZ1fZQoaAZoCWgPQwhv1uB9VVY+wJSGlFKUaBVLMmgWR0CrQGvykKu0dX2UKGgGaAloD0MIz7wcdt/FOsCUhpRSlGgVSzJoFkdAq0KGGO+7DnV9lChoBmgJaA9DCOp6ouvCkzbAlIaUUpRoFUsyaBZHQKtCMxptaZB1fZQoaAZoCWgPQwgxeJj2zc0vwJSGlFKUaBVLMmgWR0CrQd8RUWEcdX2UKGgGaAloD0MI7fFCOjwENcCUhpRSlGgVSzJoFkdAq0GNjLB9C3V9lChoBmgJaA9DCB2R71LqqjbAlIaUUpRoFUsyaBZHQKtDq60Y0l91fZQoaAZoCWgPQwhRMjm1M0wzwJSGlFKUaBVLMmgWR0CrQ1jA8B+4dX2UKGgGaAloD0MIO1RTknXsNcCUhpRSlGgVSzJoFkdAq0ME0Nz8xnV9lChoBmgJaA9DCBgmUwWjqjLAlIaUUpRoFUsyaBZHQKtCs4G2TgV1fZQoaAZoCWgPQwg2VmKelQg3wJSGlFKUaBVLMmgWR0CrRN7EgntwdX2UKGgGaAloD0MIkSi0rPvrMcCUhpRSlGgVSzJoFkdAq0SL0z0pVnV9lChoBmgJaA9DCGAhc2VQ1TfAlIaUUpRoFUsyaBZHQKtEN+ee4Cp1fZQoaAZoCWgPQwggYK3aNS00wJSGlFKUaBVLMmgWR0CrQ+Z4wAU+dX2UKGgGaAloD0MIzbG8qx6ENsCUhpRSlGgVSzJoFkdAq0X+IKtxMnV9lChoBmgJaA9DCDQQy2YOxTfAlIaUUpRoFUsyaBZHQKtFqyQgcLl1fZQoaAZoCWgPQwjsoX2s4OMwwJSGlFKUaBVLMmgWR0CrRVc4YJmedX2UKGgGaAloD0MIVIuIYvK2PsCUhpRSlGgVSzJoFkdAq0UF5WzWw3V9lChoBmgJaA9DCEZ8J2a9LD3AlIaUUpRoFUsyaBZHQKtHKDZDiOx1fZQoaAZoCWgPQwhivOZVnSk1wJSGlFKUaBVLMmgWR0CrRtU+cH4XdX2UKGgGaAloD0MIjniymxn9OMCUhpRSlGgVSzJoFkdAq0aBWPtD2XV9lChoBmgJaA9DCLmKxW8KRzrAlIaUUpRoFUsyaBZHQKtGL8w5/9Z1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.98, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (631 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -24.676276814192533, "std_reward": 2.1196262613594543, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T20:01:19.495290"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5ae7c3fce20d09a2efaeece033300b0910307a20e9d4133d54d64f456c4a7d1
|
3 |
+
size 3056
|