metadata
license: mit
base_model: dbmdz/bert-base-turkish-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: results
results: []
results
This model is a fine-tuned version of dbmdz/bert-base-turkish-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0063
- Accuracy: 0.9984
- F1: 0.9988
- Precision: 0.9995
- Recall: 0.9980
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.0659 | 1.0 | 169 | 0.0076 | 0.9978 | 0.9983 | 0.9975 | 0.9990 |
0.004 | 2.0 | 338 | 0.0063 | 0.9984 | 0.9988 | 0.9995 | 0.9980 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1