Edit model card

roberta-large-1160k

Intended uses

You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.

How to use

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='AI-Sweden-Models/roberta-large-1160k')
>>> unmasker("Huvudstaden i Sverige är <mask>.")
[{'score': 0.5841221213340759,
  'token': 1945,
  'token_str': ' Stockholm',
  'sequence': 'Huvudstaden i Sverige är Stockholm.'},
 {'score': 0.06775698810815811,
  'token': 5007,
  'token_str': ' Göteborg',
  'sequence': 'Huvudstaden i Sverige är Göteborg.'},
 {'score': 0.05057400465011597,
  'token': 5761,
  'token_str': ' Malmö',
  'sequence': 'Huvudstaden i Sverige är Malmö.'},
 {'score': 0.021936343982815742,
  'token': 21449,
  'token_str': ' Norrköping',
  'sequence': 'Huvudstaden i Sverige är Norrköping.'},
 {'score': 0.017798304557800293,
  'token': 5658,
  'token_str': ' Uppsala',
  'sequence': 'Huvudstaden i Sverige är Uppsala.'}]
>>> unmasker("Hovedstaden i Norge er <mask>.")
[{'score': 0.6792309284210205,
  'token': 5158,
  'token_str': ' Oslo',
  'sequence': 'Hovedstaden i Norge er Oslo.'},
 {'score': 0.09379775077104568,
  'token': 15456,
  'token_str': ' Trondheim',
  'sequence': 'Hovedstaden i Norge er Trondheim.'},
 {'score': 0.052535850554704666,
  'token': 11370,
  'token_str': ' Bergen',
  'sequence': 'Hovedstaden i Norge er Bergen.'},
 {'score': 0.03465486690402031,
  'token': 29407,
  'token_str': ' hovedstaden',
  'sequence': 'Hovedstaden i Norge er hovedstaden.'},
 {'score': 0.03017985075712204,
  'token': 33311,
  'token_str': ' Kristiansand',
  'sequence': 'Hovedstaden i Norge er Kristiansand.'}]
>>> unmasker("Danmarks hovedstad er <mask>.")
[{'score': 0.11624140292406082,
  'token': 4794,
  'token_str': ' København',
  'sequence': 'Danmarks hovedstad er København.'},
 {'score': 0.045051511377096176,
  'token': 7680,
  'token_str': ' død',
  'sequence': 'Danmarks hovedstad er død.'},
 {'score': 0.02936543896794319,
  'token': 10795,
  'token_str': ' lukket',
  'sequence': 'Danmarks hovedstad er lukket.'},
 {'score': 0.026030730456113815,
  'token': 13580,
  'token_str': ' Odense',
  'sequence': 'Danmarks hovedstad er Odense.'},
 {'score': 0.02130937948822975,
  'token': 16347,
  'token_str': ' Roskilde',
  'sequence': 'Danmarks hovedstad er Roskilde.'}]

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained('AI-Sweden-Models/roberta-large-1160k')
model = RobertaModel.from_pretrained('AI-Sweden-Models/roberta-large-1160k')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

Training data

The Scandinavian subset of the Nordic Pile (Swedish, Norwegian, Danish), consisting of 414 962 688 text samples.

Training procedure

The model was trained with the optimum-habana framework. Utilizing 8X Intel® Gaudi® 2 AI accelerators, managed by Intel Sweden AB.

The weights from https://huggingface.co/FacebookAI/roberta-large are used as initialization, and the tokenizer is trained from scratch.

This model is a checkpoint (1 160 000 / 1 350 790). The final run is 5 epochs. This is epoch: 4.29.

A batch size of 1536 was used.

Evaluation results

When fine-tuned on downstream tasks, this model achieves the following results:

rank da_rank no_rank sv_rank dansk angry_tweets scala_da scandiqa_da norne_nb norne_nn norec scala_nb scala_nn norquad suc3 swerec scala_sv scandiqa_sv
1.3 1.33 1.34 1.23 74.16 51.2 73.87 49.34 92.01 87.17 60.11 72.85 65.56 60.38 82.65 77.25 77.9 49.64

As by (2024/03/26) it is ranked #2 at ScandEval after gpt-4-0613.

Downloads last month
529
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.