Edit model card

AI-Sweden-Models/Llama-3-8B

Intended usage:

This is a base model, it can be finetuned to a particular use case.

-----> instruct version here <-----

Use with transformers

See the snippet below for usage with Transformers:

import transformers
import torch

model_id = "AI-Sweden-Models/Llama-3-8B"

pipeline = transformers.pipeline(
    task="text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto"
)

pipeline(
    text_inputs="Sommar och sol är det bästa jag vet",
    max_length=128,
    repetition_penalty=1.03
)
>>> "Sommar och sol är det bästa jag vet!
Och nu när jag har fått lite extra semester så ska jag njuta till max av allt som våren och sommaren har att erbjuda.
Jag har redan börjat med att sitta ute på min altan och ta en kopp kaffe och läsa i tidningen, det är så skönt att bara sitta där och njuta av livet.

Ikväll blir det grillat och det ser jag fram emot!"

Training information

AI-Sweden-Models/Llama-3-8B is a continuation of the pretraining process from meta-llama/Meta-Llama-3-8B. It was trained on a subset from The Nordic Pile containing Swedish, Norwegian and Danish. The training is done on all model parameters, it is a full finetune.

The training dataset consists of 227 105 079 296 tokens. It was trained on the Rattler supercomputer at the Dell Technologies Edge Innovation Center in Austin, Texas. The training used 23 nodes of a duration of 30 days, where one node contained 4X Nvidia A100 GPUs, yielding 92 GPUs.

trainer.yaml:

learning_rate: 2e-5
warmup_steps: 100
lr_scheduler: cosine
optimizer: adamw_torch_fused
max_grad_norm: 1.0
gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
sequence_len: 8192

deepspeed_zero2.json:

{
  "zero_optimization": {
    "stage": 2,
    "offload_optimizer": {
      "device": "cpu"
    },
    "contiguous_gradients": true,
    "overlap_comm": true
  },
  "bf16": {
    "enabled": "auto"
  },
  "fp16": {
    "enabled": "auto",
    "auto_cast": false,
    "loss_scale": 0,
    "initial_scale_power": 32,
    "loss_scale_window": 1000,
    "hysteresis": 2,
    "min_loss_scale": 1
  },
  "gradient_accumulation_steps": "auto",
  "gradient_clipping": "auto",
  "train_batch_size": "auto",
  "train_micro_batch_size_per_gpu": "auto",
  "wall_clock_breakdown": false
}

Checkpoints

  • 15/6/2024 (18833) => 1 epoch
  • 11/6/2024 (16000)
  • 07/6/2024 (14375)
  • 03/6/2024 (11525)
  • 29/5/2024 (8200)
  • 26/5/2024 (6550)
  • 24/5/2024 (5325)
  • 22/5/2024 (3900)
  • 20/5/2024 (2700)
  • 13/5/2024 (1500)
Downloads last month
174
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AI-Sweden-Models/Llama-3-8B

Finetuned
(350)
this model
Finetunes
3 models
Quantizations
12 models

Spaces using AI-Sweden-Models/Llama-3-8B 5

Collection including AI-Sweden-Models/Llama-3-8B