metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- librispeech_asr_dummy
metrics:
- wer
model-index:
- name: wav2vec2-base-librispeech
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: librispeech_asr_dummy
type: librispeech_asr_dummy
config: clean
split: None
args: clean
metrics:
- name: Wer
type: wer
value: 0.4069767441860465
wav2vec2-base-librispeech
This model is a fine-tuned version of facebook/wav2vec2-base on the librispeech_asr_dummy dataset. It achieves the following results on the evaluation set:
- Loss: 0.9548
- Wer: 0.4070
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 150
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.4865 | 29.41 | 500 | 3.5010 | 1.0 |
1.112 | 58.82 | 1000 | 1.0382 | 0.4767 |
0.111 | 88.24 | 1500 | 0.9833 | 0.5116 |
0.0438 | 117.65 | 2000 | 0.9302 | 0.4302 |
0.0241 | 147.06 | 2500 | 0.9548 | 0.4070 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2