|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- Vikhrmodels/GrandMaster-PRO-MAX |
|
language: |
|
- ru |
|
- en |
|
base_model: |
|
- Qwen/Qwen2-VL-2B-Instruct |
|
pipeline_tag: text2text-generation |
|
tags: |
|
- multimodal |
|
library_name: transformers |
|
--- |
|
|
|
# tvl-mini |
|
|
|
|
|
## Description |
|
|
|
This is LORA finetune of Qwen2-VL-2B on russian language. |
|
|
|
|
|
## Data |
|
|
|
Dataset contains: |
|
- GrandMaster-PRO-MAX dataset (68k samples) |
|
- Visual Reasoning (36k samples) #Training in progress |
|
- Captioning (34k samples) #Training in progress |
|
- Knowledgeable VQA (35k samples) #Training in progress |
|
- VQA (80k samples) #Training in progress |
|
- Classification (21k samples) #Training in progress |
|
- Conversations (11k samples) #Training in progress |
|
|
|
## Bechmarks |
|
|
|
### TODO |
|
|
|
## Quickstart |
|
|
|
Your can simply run [this notebook](https://www.kaggle.com/code/artemdzhalilov/tvl-hand-test) or run code below. |
|
|
|
First install qwen-vl-utils and dev version of transformers: |
|
|
|
```bash |
|
pip install qwen-vl-utils |
|
pip install --no-cache-dir git+https://github.com/huggingface/transformers@19e6e80e10118f855137b90740936c0b11ac397f |
|
``` |
|
|
|
And then run: |
|
|
|
```bash |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
import torch |
|
|
|
model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"2Vasabi/tvl-mini-0.1", torch_dtype=torch.bfloat16, device_map="auto" |
|
) |
|
|
|
|
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{ |
|
"type": "image", |
|
"image": "https://i.ibb.co/d0QL8s6/images.jpg", |
|
}, |
|
{"type": "text", "text": "Кратко опиши что ты видишь на изображении"}, |
|
], |
|
} |
|
] |
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
|
|
inputs = inputs.to("cuda") |
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=1000) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
print(output_text) |
|
``` |