ep9io's picture
Upload README.md with huggingface_hub
4eea497 verified
|
raw
history blame
24.9 kB
metadata
base_model: google/flan-t5-xl
datasets:
  - 2024-mcm-everitt-ryan/job-bias-synthetic-human-benchmark-v2
language: en
license: apache-2.0
model_id: flan-t5-xl-job-bias-qlora-seq2seq-cls
model_description: >-
  The model is a multi-label classifier designed to detect various types of bias
  within job descriptions.
developers: Tristan Everitt and Paul Ryan
model_card_authors: See developers
model_card_contact: See developers
repo: https://gitlab.computing.dcu.ie/everitt2/2024-mcm-everitt-ryan
training_regime: >-
  accelerator_config="{'split_batches': False, 'dispatch_batches': None,
  'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False,
  'gradient_accumulation_kwargs': None}", adafactor=false, adam_beta1=0.9,
  adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=false,
  batch_eval_metrics=false, bf16=false, bf16_full_eval=false, data_seed="None",
  dataloader_drop_last=false, dataloader_num_workers=0,
  dataloader_persistent_workers=false, dataloader_pin_memory=true,
  dataloader_prefetch_factor="None", ddp_backend="None",
  ddp_broadcast_buffers="None", ddp_bucket_cap_mb="None",
  ddp_find_unused_parameters="None", ddp_timeout=1800, deepspeed="None",
  disable_tqdm=false, dispatch_batches="None", do_eval=true, do_predict=false,
  do_train=false, eval_accumulation_steps="None", eval_batch_size=8,
  eval_delay=0, eval_do_concat_batches=true, eval_on_start=false,
  eval_steps="None", eval_strategy="epoch", evaluation_strategy="None",
  fp16=false, fp16_backend="auto", fp16_full_eval=false, fp16_opt_level="O1",
  fsdp="[]", fsdp_config="{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2':
  False, 'xla_fsdp_grad_ckpt': False}", fsdp_min_num_params=0,
  fsdp_transformer_layer_cls_to_wrap="None", full_determinism=false,
  generation_config="None", generation_max_length="None",
  generation_num_beams="None", gradient_accumulation_steps=1,
  gradient_checkpointing=false, gradient_checkpointing_kwargs="None",
  greater_is_better=false, group_by_length=false, half_precision_backend="auto",
  ignore_data_skip=false, include_inputs_for_metrics=false, jit_mode_eval=false,
  label_names="None", label_smoothing_factor=0.0, learning_rate=0.001,
  length_column_name="length", load_best_model_at_end=true, local_rank=0,
  lr_scheduler_kwargs="{}", lr_scheduler_type="linear", max_grad_norm=1.0,
  max_steps=-1, metric_for_best_model="loss", mp_parameters="",
  neftune_noise_alpha="None", no_cuda=false, num_train_epochs=3,
  optim="adamw_torch", optim_args="None", optim_target_modules="None",
  past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=8,
  per_gpu_eval_batch_size="None", per_gpu_train_batch_size="None",
  predict_with_generate=true, prediction_loss_only=false, ray_scope="last",
  remove_unused_columns=true, report_to="[]",
  restore_callback_states_from_checkpoint=false, resume_from_checkpoint="None",
  seed=42, skip_memory_metrics=true, sortish_sampler=false,
  split_batches="None", tf32="None", torch_compile=false,
  torch_compile_backend="None", torch_compile_mode="None", torchdynamo="None",
  tpu_num_cores="None", train_batch_size=8, use_cpu=false, use_ipex=false,
  use_legacy_prediction_loop=false, use_mps_device=false, warmup_ratio=0.0,
  warmup_steps=0, weight_decay=0.001
results: |2-
                    precision    recall  f1-score   support
      
               age       0.89      0.59      0.71        80
        disability       0.89      0.40      0.55        80
          feminine       0.92      0.90      0.91        80
           general       0.79      0.60      0.68        80
         masculine       0.83      0.68      0.74        80
           neutral       0.37      0.93      0.53        80
            racial       0.89      0.79      0.83        80
         sexuality       0.96      0.81      0.88        80
      
         micro avg       0.72      0.71      0.72       640
         macro avg       0.82      0.71      0.73       640
      weighted avg       0.82      0.71      0.73       640
       samples avg       0.74      0.75      0.74       640
      
compute_infrastructure: |-
  - Linux 5.15.0-78-generic x86_64
  - MemTotal:       1056619068 kB
  - 256 X AMD EPYC 7702 64-Core Processor
  - GPU_0: NVIDIA L40S
software: >-
  python 3.10.12, accelerate 0.32.1, aiohttp 3.9.5, aiosignal 1.3.1, anyio
  4.2.0, argon2-cffi 23.1.0, argon2-cffi-bindings 21.2.0, arrow 1.3.0, asttokens
  2.4.1, async-lru 2.0.4, async-timeout 4.0.3, attrs 23.2.0, awscli 1.33.26,
  Babel 2.14.0, beautifulsoup4 4.12.3, bitsandbytes 0.43.1, bleach 6.1.0,
  blinker 1.4, botocore 1.34.144, certifi 2024.2.2, cffi 1.16.0,
  charset-normalizer 3.3.2, click 8.1.7, cloudpickle 3.0.0, colorama 0.4.6, comm
  0.2.1, cryptography 3.4.8, dask 2024.7.0, datasets 2.20.0, dbus-python 1.2.18,
  debugpy 1.8.0, decorator 5.1.1, defusedxml 0.7.1, dill 0.3.8, distro 1.7.0,
  docutils 0.16, einops 0.8.0, entrypoints 0.4, evaluate 0.4.2, exceptiongroup
  1.2.0, executing 2.0.1, fastjsonschema 2.19.1, filelock 3.13.1, flash-attn
  2.6.1, fqdn 1.5.1, frozenlist 1.4.1, fsspec 2024.2.0, h11 0.14.0, hf_transfer
  0.1.6, httpcore 1.0.2, httplib2 0.20.2, httpx 0.26.0, huggingface-hub 0.23.4,
  idna 3.6, importlib_metadata 8.0.0, iniconfig 2.0.0, ipykernel 6.29.0, ipython
  8.21.0, ipython-genutils 0.2.0, ipywidgets 8.1.1, isoduration 20.11.0, jedi
  0.19.1, jeepney 0.7.1, Jinja2 3.1.3, jmespath 1.0.1, joblib 1.4.2, json5
  0.9.14, jsonpointer 2.4, jsonschema 4.21.1, jsonschema-specifications
  2023.12.1, jupyter-archive 3.4.0, jupyter_client 7.4.9, jupyter_contrib_core
  0.4.2, jupyter_contrib_nbextensions 0.7.0, jupyter_core 5.7.1, jupyter-events
  0.9.0, jupyter-highlight-selected-word 0.2.0, jupyter-lsp 2.2.2,
  jupyter-nbextensions-configurator 0.6.3, jupyter_server 2.12.5,
  jupyter_server_terminals 0.5.2, jupyterlab 4.1.0, jupyterlab_pygments 0.3.0,
  jupyterlab_server 2.25.2, jupyterlab-widgets 3.0.9, keyring 23.5.0,
  launchpadlib 1.10.16, lazr.restfulclient 0.14.4, lazr.uri 1.0.6, locket 1.0.0,
  lxml 5.1.0, MarkupSafe 2.1.5, matplotlib-inline 0.1.6, mistune 3.0.2,
  more-itertools 8.10.0, mpmath 1.3.0, multidict 6.0.5, multiprocess 0.70.16,
  nbclassic 1.0.0, nbclient 0.9.0, nbconvert 7.14.2, nbformat 5.9.2,
  nest-asyncio 1.6.0, networkx 3.2.1, nltk 3.8.1, notebook 6.5.5, notebook_shim
  0.2.3, numpy 1.26.3, nvidia-cublas-cu12 12.1.3.1, nvidia-cuda-cupti-cu12
  12.1.105, nvidia-cuda-nvrtc-cu12 12.1.105, nvidia-cuda-runtime-cu12 12.1.105,
  nvidia-cudnn-cu12 8.9.2.26, nvidia-cufft-cu12 11.0.2.54, nvidia-curand-cu12
  10.3.2.106, nvidia-cusolver-cu12 11.4.5.107, nvidia-cusparse-cu12 12.1.0.106,
  nvidia-nccl-cu12 2.19.3, nvidia-nvjitlink-cu12 12.3.101, nvidia-nvtx-cu12
  12.1.105, oauthlib 3.2.0, overrides 7.7.0, packaging 23.2, pandas 2.2.2,
  pandocfilters 1.5.1, parso 0.8.3, partd 1.4.2, peft 0.11.1, pexpect 4.9.0,
  pillow 10.2.0, pip 24.1.2, platformdirs 4.2.0, pluggy 1.5.0, polars 1.1.0,
  prometheus-client 0.19.0, prompt-toolkit 3.0.43, protobuf 5.27.2, psutil
  5.9.8, ptyprocess 0.7.0, pure-eval 0.2.2, pyarrow 16.1.0, pyarrow-hotfix 0.6,
  pyasn1 0.6.0, pycparser 2.21, Pygments 2.17.2, PyGObject 3.42.1, PyJWT 2.3.0,
  pyparsing 2.4.7, pytest 8.2.2, python-apt 2.4.0+ubuntu3, python-dateutil
  2.8.2, python-json-logger 2.0.7, pytz 2024.1, PyYAML 6.0.1, pyzmq 24.0.1,
  referencing 0.33.0, regex 2024.5.15, requests 2.32.3, rfc3339-validator 0.1.4,
  rfc3986-validator 0.1.1, rpds-py 0.17.1, rsa 4.7.2, s3transfer 0.10.2,
  safetensors 0.4.3, scikit-learn 1.5.1, scipy 1.14.0, SecretStorage 3.3.1,
  Send2Trash 1.8.2, sentence-transformers 3.0.1, sentencepiece 0.2.0, setuptools
  69.0.3, six 1.16.0, sniffio 1.3.0, soupsieve 2.5, stack-data 0.6.3, sympy
  1.12, tabulate 0.9.0, terminado 0.18.0, threadpoolctl 3.5.0, tiktoken 0.7.0,
  tinycss2 1.2.1, tokenizers 0.19.1, tomli 2.0.1, toolz 0.12.1, torch 2.2.0,
  torchaudio 2.2.0, torchdata 0.7.1, torchtext 0.17.0, torchvision 0.17.0,
  tornado 6.4, tqdm 4.66.4, traitlets 5.14.1, transformers 4.42.4, triton 2.2.0,
  types-python-dateutil 2.8.19.20240106, typing_extensions 4.9.0, tzdata 2024.1,
  uri-template 1.3.0, urllib3 2.2.2, wadllib 1.3.6, wcwidth 0.2.13, webcolors
  1.13, webencodings 0.5.1, websocket-client 1.7.0, wheel 0.42.0,
  widgetsnbextension 4.0.9, xxhash 3.4.1, yarl 1.9.4, zipp 1.0.0
hardware_type: 1 X NVIDIA L40S
hours_used: '1.47'
cloud_provider: N/A
cloud_region: N/A
co2_emitted: N/A
direct_use: |2-

      ```python
      from transformers import pipeline

      pipe = pipeline("text-classification", model="2024-mcm-everitt-ryan/flan-t5-xl-job-bias-qlora-seq2seq-cls", return_all_scores=True)

      results = pipe("Join our dynamic and fast-paced team as a Junior Marketing Specialist. We seek a tech-savvy and energetic individual who thrives in a vibrant environment. Ideal candidates are digital natives with a fresh perspective, ready to adapt quickly to new trends. You should have recent experience in social media strategies and a strong understanding of current digital marketing tools. We're looking for someone with a youthful mindset, eager to bring innovative ideas to our young and ambitious team. If you're a recent graduate or early in your career, this opportunity is perfect for you!")
      print(results)
      ```
      >> [[
      {'label': 'age', 'score': 0.9883460402488708}, 
      {'label': 'disability', 'score': 0.00787709467113018}, 
      {'label': 'feminine', 'score': 0.007224376779049635}, 
      {'label': 'general', 'score': 0.09967829287052155}, 
      {'label': 'masculine', 'score': 0.0035264550242573023}, 
      {'label': 'racial', 'score': 0.014618005603551865}, 
      {'label': 'sexuality', 'score': 0.005568435415625572}
      ]]
      
model-index:
  - name: flan-t5-xl-job-bias-qlora-seq2seq-cls
    results:
      - task:
          type: multi_label_classification
        dataset:
          name: 2024-mcm-everitt-ryan/job-bias-synthetic-human-benchmark-v2
          type: mix_human-eval_synthetic
        metrics:
          - type: loss
            value: 0.5048828125
          - type: accuracy
            value: 0.7037671232876712
          - type: f1_micro
            value: 0.7165354330708661
          - type: precision_micro
            value: 0.7222222222222222
          - type: recall_micro
            value: 0.7109375
          - type: roc_auc_micro
            value: 0.833767361111111
          - type: f1_macro
            value: 0.7300939594393451
          - type: precision_macro
            value: 0.8166695514759241
          - type: recall_macro
            value: 0.7109375
          - type: roc_auc_macro
            value: 0.8337673611111112
          - type: f1_samples
            value: 0.7418215916503589
          - type: precision_samples
            value: 0.7397260273972602
          - type: recall_samples
            value: 0.7529965753424658
          - type: roc_auc_samples
            value: 0.8542420906718853
          - type: f1_weighted
            value: 0.7300939594393452
          - type: precision_weighted
            value: 0.816669551475924
          - type: recall_weighted
            value: 0.7109375
          - type: roc_auc_weighted
            value: 0.833767361111111
          - type: runtime
            value: 88.8003
          - type: samples_per_second
            value: 6.577
          - type: steps_per_second
            value: 0.822
          - type: epoch
            value: 3

Model Card for flan-t5-xl-job-bias-qlora-seq2seq-cls

Model Details

Model Description

The model is a multi-label classifier designed to detect various types of bias within job descriptions.

  • Developed by: Tristan Everitt and Paul Ryan
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): en
  • License: apache-2.0
  • Finetuned from model [optional]: google/flan-t5-xl

Model Sources [optional]

Uses

Direct Use

```python
from transformers import pipeline

pipe = pipeline("text-classification", model="2024-mcm-everitt-ryan/flan-t5-xl-job-bias-qlora-seq2seq-cls", return_all_scores=True)

results = pipe("Join our dynamic and fast-paced team as a Junior Marketing Specialist. We seek a tech-savvy and energetic individual who thrives in a vibrant environment. Ideal candidates are digital natives with a fresh perspective, ready to adapt quickly to new trends. You should have recent experience in social media strategies and a strong understanding of current digital marketing tools. We're looking for someone with a youthful mindset, eager to bring innovative ideas to our young and ambitious team. If you're a recent graduate or early in your career, this opportunity is perfect for you!")
print(results)
```
>> [[
{'label': 'age', 'score': 0.9883460402488708}, 
{'label': 'disability', 'score': 0.00787709467113018}, 
{'label': 'feminine', 'score': 0.007224376779049635}, 
{'label': 'general', 'score': 0.09967829287052155}, 
{'label': 'masculine', 'score': 0.0035264550242573023}, 
{'label': 'racial', 'score': 0.014618005603551865}, 
{'label': 'sexuality', 'score': 0.005568435415625572}
]]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: accelerator_config="{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}", adafactor=false, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=false, batch_eval_metrics=false, bf16=false, bf16_full_eval=false, data_seed="None", dataloader_drop_last=false, dataloader_num_workers=0, dataloader_persistent_workers=false, dataloader_pin_memory=true, dataloader_prefetch_factor="None", ddp_backend="None", ddp_broadcast_buffers="None", ddp_bucket_cap_mb="None", ddp_find_unused_parameters="None", ddp_timeout=1800, deepspeed="None", disable_tqdm=false, dispatch_batches="None", do_eval=true, do_predict=false, do_train=false, eval_accumulation_steps="None", eval_batch_size=8, eval_delay=0, eval_do_concat_batches=true, eval_on_start=false, eval_steps="None", eval_strategy="epoch", evaluation_strategy="None", fp16=false, fp16_backend="auto", fp16_full_eval=false, fp16_opt_level="O1", fsdp="[]", fsdp_config="{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}", fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap="None", full_determinism=false, generation_config="None", generation_max_length="None", generation_num_beams="None", gradient_accumulation_steps=1, gradient_checkpointing=false, gradient_checkpointing_kwargs="None", greater_is_better=false, group_by_length=false, half_precision_backend="auto", ignore_data_skip=false, include_inputs_for_metrics=false, jit_mode_eval=false, label_names="None", label_smoothing_factor=0.0, learning_rate=0.001, length_column_name="length", load_best_model_at_end=true, local_rank=0, lr_scheduler_kwargs="{}", lr_scheduler_type="linear", max_grad_norm=1.0, max_steps=-1, metric_for_best_model="loss", mp_parameters="", neftune_noise_alpha="None", no_cuda=false, num_train_epochs=3, optim="adamw_torch", optim_args="None", optim_target_modules="None", past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=8, per_gpu_eval_batch_size="None", per_gpu_train_batch_size="None", predict_with_generate=true, prediction_loss_only=false, ray_scope="last", remove_unused_columns=true, report_to="[]", restore_callback_states_from_checkpoint=false, resume_from_checkpoint="None", seed=42, skip_memory_metrics=true, sortish_sampler=false, split_batches="None", tf32="None", torch_compile=false, torch_compile_backend="None", torch_compile_mode="None", torchdynamo="None", tpu_num_cores="None", train_batch_size=8, use_cpu=false, use_ipex=false, use_legacy_prediction_loop=false, use_mps_device=false, warmup_ratio=0.0, warmup_steps=0, weight_decay=0.001

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

              precision    recall  f1-score   support

         age       0.89      0.59      0.71        80
  disability       0.89      0.40      0.55        80
    feminine       0.92      0.90      0.91        80
     general       0.79      0.60      0.68        80
   masculine       0.83      0.68      0.74        80
     neutral       0.37      0.93      0.53        80
      racial       0.89      0.79      0.83        80
   sexuality       0.96      0.81      0.88        80

   micro avg       0.72      0.71      0.72       640
   macro avg       0.82      0.71      0.73       640
weighted avg       0.82      0.71      0.73       640
 samples avg       0.74      0.75      0.74       640

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: 1 X NVIDIA L40S
  • Hours used: 1.47
  • Cloud Provider: N/A
  • Compute Region: N/A
  • Carbon Emitted: N/A

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

  • Linux 5.15.0-78-generic x86_64
  • MemTotal: 1056619068 kB
  • 256 X AMD EPYC 7702 64-Core Processor
  • GPU_0: NVIDIA L40S

Hardware

[More Information Needed]

Software

python 3.10.12, accelerate 0.32.1, aiohttp 3.9.5, aiosignal 1.3.1, anyio 4.2.0, argon2-cffi 23.1.0, argon2-cffi-bindings 21.2.0, arrow 1.3.0, asttokens 2.4.1, async-lru 2.0.4, async-timeout 4.0.3, attrs 23.2.0, awscli 1.33.26, Babel 2.14.0, beautifulsoup4 4.12.3, bitsandbytes 0.43.1, bleach 6.1.0, blinker 1.4, botocore 1.34.144, certifi 2024.2.2, cffi 1.16.0, charset-normalizer 3.3.2, click 8.1.7, cloudpickle 3.0.0, colorama 0.4.6, comm 0.2.1, cryptography 3.4.8, dask 2024.7.0, datasets 2.20.0, dbus-python 1.2.18, debugpy 1.8.0, decorator 5.1.1, defusedxml 0.7.1, dill 0.3.8, distro 1.7.0, docutils 0.16, einops 0.8.0, entrypoints 0.4, evaluate 0.4.2, exceptiongroup 1.2.0, executing 2.0.1, fastjsonschema 2.19.1, filelock 3.13.1, flash-attn 2.6.1, fqdn 1.5.1, frozenlist 1.4.1, fsspec 2024.2.0, h11 0.14.0, hf_transfer 0.1.6, httpcore 1.0.2, httplib2 0.20.2, httpx 0.26.0, huggingface-hub 0.23.4, idna 3.6, importlib_metadata 8.0.0, iniconfig 2.0.0, ipykernel 6.29.0, ipython 8.21.0, ipython-genutils 0.2.0, ipywidgets 8.1.1, isoduration 20.11.0, jedi 0.19.1, jeepney 0.7.1, Jinja2 3.1.3, jmespath 1.0.1, joblib 1.4.2, json5 0.9.14, jsonpointer 2.4, jsonschema 4.21.1, jsonschema-specifications 2023.12.1, jupyter-archive 3.4.0, jupyter_client 7.4.9, jupyter_contrib_core 0.4.2, jupyter_contrib_nbextensions 0.7.0, jupyter_core 5.7.1, jupyter-events 0.9.0, jupyter-highlight-selected-word 0.2.0, jupyter-lsp 2.2.2, jupyter-nbextensions-configurator 0.6.3, jupyter_server 2.12.5, jupyter_server_terminals 0.5.2, jupyterlab 4.1.0, jupyterlab_pygments 0.3.0, jupyterlab_server 2.25.2, jupyterlab-widgets 3.0.9, keyring 23.5.0, launchpadlib 1.10.16, lazr.restfulclient 0.14.4, lazr.uri 1.0.6, locket 1.0.0, lxml 5.1.0, MarkupSafe 2.1.5, matplotlib-inline 0.1.6, mistune 3.0.2, more-itertools 8.10.0, mpmath 1.3.0, multidict 6.0.5, multiprocess 0.70.16, nbclassic 1.0.0, nbclient 0.9.0, nbconvert 7.14.2, nbformat 5.9.2, nest-asyncio 1.6.0, networkx 3.2.1, nltk 3.8.1, notebook 6.5.5, notebook_shim 0.2.3, numpy 1.26.3, nvidia-cublas-cu12 12.1.3.1, nvidia-cuda-cupti-cu12 12.1.105, nvidia-cuda-nvrtc-cu12 12.1.105, nvidia-cuda-runtime-cu12 12.1.105, nvidia-cudnn-cu12 8.9.2.26, nvidia-cufft-cu12 11.0.2.54, nvidia-curand-cu12 10.3.2.106, nvidia-cusolver-cu12 11.4.5.107, nvidia-cusparse-cu12 12.1.0.106, nvidia-nccl-cu12 2.19.3, nvidia-nvjitlink-cu12 12.3.101, nvidia-nvtx-cu12 12.1.105, oauthlib 3.2.0, overrides 7.7.0, packaging 23.2, pandas 2.2.2, pandocfilters 1.5.1, parso 0.8.3, partd 1.4.2, peft 0.11.1, pexpect 4.9.0, pillow 10.2.0, pip 24.1.2, platformdirs 4.2.0, pluggy 1.5.0, polars 1.1.0, prometheus-client 0.19.0, prompt-toolkit 3.0.43, protobuf 5.27.2, psutil 5.9.8, ptyprocess 0.7.0, pure-eval 0.2.2, pyarrow 16.1.0, pyarrow-hotfix 0.6, pyasn1 0.6.0, pycparser 2.21, Pygments 2.17.2, PyGObject 3.42.1, PyJWT 2.3.0, pyparsing 2.4.7, pytest 8.2.2, python-apt 2.4.0+ubuntu3, python-dateutil 2.8.2, python-json-logger 2.0.7, pytz 2024.1, PyYAML 6.0.1, pyzmq 24.0.1, referencing 0.33.0, regex 2024.5.15, requests 2.32.3, rfc3339-validator 0.1.4, rfc3986-validator 0.1.1, rpds-py 0.17.1, rsa 4.7.2, s3transfer 0.10.2, safetensors 0.4.3, scikit-learn 1.5.1, scipy 1.14.0, SecretStorage 3.3.1, Send2Trash 1.8.2, sentence-transformers 3.0.1, sentencepiece 0.2.0, setuptools 69.0.3, six 1.16.0, sniffio 1.3.0, soupsieve 2.5, stack-data 0.6.3, sympy 1.12, tabulate 0.9.0, terminado 0.18.0, threadpoolctl 3.5.0, tiktoken 0.7.0, tinycss2 1.2.1, tokenizers 0.19.1, tomli 2.0.1, toolz 0.12.1, torch 2.2.0, torchaudio 2.2.0, torchdata 0.7.1, torchtext 0.17.0, torchvision 0.17.0, tornado 6.4, tqdm 4.66.4, traitlets 5.14.1, transformers 4.42.4, triton 2.2.0, types-python-dateutil 2.8.19.20240106, typing_extensions 4.9.0, tzdata 2024.1, uri-template 1.3.0, urllib3 2.2.2, wadllib 1.3.6, wcwidth 0.2.13, webcolors 1.13, webencodings 0.5.1, websocket-client 1.7.0, wheel 0.42.0, widgetsnbextension 4.0.9, xxhash 3.4.1, yarl 1.9.4, zipp 1.0.0

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

See developers

Model Card Contact

See developers