license: apache-2.0
library_name: generic
tags:
- text2text-generation
- punctuation
- sentence-boundary-detection
- truecasing
- true-casing
language:
- af
- am
- ar
- bg
- bn
- de
- el
- en
- es
- et
- fa
- fi
- fr
- gu
- hi
- hr
- hu
- id
- is
- it
- ja
- kk
- kn
- ko
- ky
- lt
- lv
- mk
- ml
- mr
- nl
- or
- pa
- pl
- ps
- pt
- ro
- ru
- rw
- so
- sr
- sw
- ta
- te
- tr
- uk
- zh
Model Overview
This is an xlm-roberta
fine-tuned to restore punctuation, true-case (capitalize),
and detect sentence boundaries (full stops) in 47 languages.
Model Architecture
This model implements the following graph, which allows punctuation, true-casing, and fullstop prediction in every language without language-specific behavior:
We start by tokenizing the text and encoding it with XLM-Roberta, which is the pre-trained portion of this graph.
Then we predict punctuation before and after every subtoken. Predicting before each token allows for Spanish inverted question marks. Predicting after every token allows for all other punctuation, including punctuation within continuous-script languages and acronyms.
We use embeddings to represent the predicted punctuation tokens to inform the sentence boundary head of the punctuation that'll be inserted into the text. This allows proper full stop prediction, since certain punctuation tokens (periods, questions marks, etc.) are strongly correlated with sentence boundaries.
We then shift full stop predictions to the right by one, to inform the true-casing head of where the beginning of each new sentence is. This is important since true-casing is strongly correlated to sentence boundaries.
For true-casing, we predict N
predictions per subtoken, where N
is the number of characters in the subtoken.
In practice, N
is the maximum subtoken length and extra predictions are ignored. Essentially, true-casing is
modeled as a multi-label problem. This allows for upper-casing arbitrary characters, e.g., "NATO", "MacDonald", "mRNA", etc.
Applying all these predictions to the input text, we can punctuate, true-case, and split sentences in any language.
Tokenizer
Instead of the hacky wrapper used by FairSeq and strangely ported (not fixed) by HuggingFace, the xlm-roberta SentencePiece model was adjusted to correctly encode the text. Per HF's comments,
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
The SP model was un-hacked with the following snippet (SentencePiece experts, let me know if there is a problem here):
from sentencepiece import SentencePieceProcessor
from sentencepiece.sentencepiece_model_pb2 import ModelProto
m = ModelProto()
m.ParseFromString(open("/path/to/xlmroberta/sentencepiece.bpe.model", "rb").read())
pieces = list(m.pieces)
pieces = (
[
ModelProto.SentencePiece(piece="<s>", type=ModelProto.SentencePiece.Type.CONTROL),
ModelProto.SentencePiece(piece="<pad>", type=ModelProto.SentencePiece.Type.CONTROL),
ModelProto.SentencePiece(piece="</s>", type=ModelProto.SentencePiece.Type.CONTROL),
ModelProto.SentencePiece(piece="<unk>", type=ModelProto.SentencePiece.Type.UNKNOWN),
]
+ pieces[3:]
+ [ModelProto.SentencePiece(piece="<mask>", type=ModelProto.SentencePiece.Type.USER_DEFINED)]
)
del m.pieces[:]
m.pieces.extend(pieces)
with open("/path/to/new/sp.model", "wb") as f:
f.write(m.SerializeToString())
Post-Punctuation Tokens
This model predicts the following set of punctuation tokens after each subtoken:
Token | Description | Relevant Languages |
---|---|---|
<NULL> | No punctuation | All |
<ACRONYM> | Every character in this subword is followed by a period | Primarily English, some European |
. | Latin full stop | Many |
, | Latin comma | Many |
? | Latin question mark | Many |
? | Full-width question mark | Chinese, Japanese |
, | Full-width comma | Chinese, Japanese |
。 | Full-width full stop | Chinese, Japanese |
、 | Ideographic comma | Chinese, Japanese |
・ | Middle dot | Japanese |
। | Danda | Hindi, Bengali, Oriya |
؟ | Arabic question mark | Arabic |
; | Greek question mark | Greek |
። | Ethiopic full stop | Amharic |
፣ | Ethiopic comma | Amharic |
፧ | Ethiopic question mark | Amharic |
Pre-Punctuation Tokens
This model predicts the following set of punctuation tokens before each subword:
Token | Description | Relevant Languages |
---|---|---|
<NULL> | No punctuation | All |
¿ | Inverted question mark | Spanish |
Training Details
This model was trained in the NeMo framework.
Training Data
This model was trained with News Crawl data from WMT.
1M lines of text for each language was used, except for a few low-resource languages which may have used less.
Languages were chosen based on whether the News Crawl corpus contained enough reliable-quality data as judged by the author.
Limitations
This model was trained on news data, and may not perform well on conversational or informal data.
Further, this model is unlikely to be of production quality. It was trained with "only" 1M lines per language, and the dev sets may have been noisy due to the nature of web-scraped news data.
This model over-predicts Spanish question marks, especially the inverted question mark ¿
(see metrics below).
Since ¿
is a rare token, especially in the
context of a 47-language model, Spanish questions were over-sampled by selecting more of these sentences from
additional training data that was not used. However, this seems to have "over-corrected" the problem and a lot
of Spanish question marks are predicted. This can be fixed by exposing prior probabilities, but I'll fine-tune
it later to fix this the right way.
Evaluation
In these metrics, keep in mind that
The data is noisy
Sentence boundaries and true-casing are conditioned on predicted punctuation, which is the most difficult task and sometimes incorrect. When conditioning on reference punctuation, true-casing and SBD is practically 100% for most languages.
Punctuation can be subjective. E.g.,
Hola mundo, ¿cómo estás?
or
Hola mundo. ¿Cómo estás?
When the sentences are longer and more practical, these ambiguities abound and affect all 3 analytics.
Test Data and Example Generation
Each test example was generated using the following procedure:
- Concatenate 11 random sentences (1 + 10 for each sentence in the test set)
- Lower-case the concatenated sentence
- Remove all punctuation
The data is a held-out portion of News Crawl, which has been deduplicated.
3,000 lines of data per language was used, generating 3,000 unique examples of 11 sentences each.
We generate 3,000 examples, where example i
begins with sentence i
and is followed by 10 random
sentences selected from the 3,000 sentence test set.
Selected Language Evaluation Reports
For now, metrics for a few selected languages are shown below. Given the amount of work required to collect and pretty-print metrics in 47 languages, I'll add more eventually.
Expand any of the following tabs to see metrics for that language.
English
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.18 98.47 98.82 538769
<ACRONYM> (label_id: 1) 66.03 78.63 71.78 571
. (label_id: 2) 90.66 93.68 92.14 30581
, (label_id: 3) 74.18 82.93 78.31 23230
? (label_id: 4) 78.10 80.08 79.07 1024
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 97.56 97.56 97.56 594175
macro avg 81.63 86.76 84.03 594175
weighted avg 97.70 97.56 97.62 594175
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 99.71 99.85 99.78 2036824
UPPER (label_id: 1) 96.40 93.27 94.81 87747
-------------------
micro avg 99.58 99.58 99.58 2124571
macro avg 98.06 96.56 97.30 2124571
weighted avg 99.57 99.58 99.58 2124571
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.97 99.98 99.98 564228
FULLSTOP (label_id: 1) 99.73 99.54 99.64 32947
-------------------
micro avg 99.96 99.96 99.96 597175
macro avg 99.85 99.76 99.81 597175
weighted avg 99.96 99.96 99.96 597175
Spanish
punct_pre test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.96 99.76 99.86 609200
¿ (label_id: 1) 39.66 77.89 52.56 1221
-------------------
micro avg 99.72 99.72 99.72 610421
macro avg 69.81 88.82 76.21 610421
weighted avg 99.83 99.72 99.76 610421
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.17 98.44 98.80 553100
<ACRONYM> (label_id: 1) 23.33 43.75 30.43 48
. (label_id: 2) 91.92 92.58 92.25 29623
, (label_id: 3) 73.07 82.04 77.30 26432
? (label_id: 4) 49.44 71.84 58.57 1218
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 97.39 97.39 97.39 610421
macro avg 67.39 77.73 71.47 610421
weighted avg 97.58 97.39 97.47 610421
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 99.82 99.86 99.84 2222062
UPPER (label_id: 1) 95.96 94.64 95.29 75940
-------------------
micro avg 99.69 99.69 99.69 2298002
macro avg 97.89 97.25 97.57 2298002
weighted avg 99.69 99.69 99.69 2298002
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.99 99.97 99.98 580519
FULLSTOP (label_id: 1) 99.52 99.81 99.66 32902
-------------------
micro avg 99.96 99.96 99.96 613421
macro avg 99.75 99.89 99.82 613421
weighted avg 99.96 99.96 99.96 613421
Amharic
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.81 99.40 99.60 729695
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 0.00 0.00 0.00 0
? (label_id: 4) 0.00 0.00 0.00 0
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 91.44 97.78 94.50 25288
፣ (label_id: 15) 66.93 80.45 73.07 5774
፧ (label_id: 16) 72.14 77.01 74.49 1170
-------------------
micro avg 99.17 99.17 99.17 761927
macro avg 82.58 88.66 85.42 761927
weighted avg 99.24 99.17 99.19 761927
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 98.50 97.22 97.86 1150
UPPER (label_id: 1) 56.16 70.69 62.60 58
-------------------
micro avg 95.94 95.94 95.94 1208
macro avg 77.33 83.95 80.23 1208
weighted avg 96.47 95.94 96.16 1208
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.97 99.91 99.94 743103
FULLSTOP (label_id: 1) 97.16 99.04 98.09 21824
-------------------
micro avg 99.89 99.89 99.89 764927
macro avg 98.57 99.48 99.02 764927
weighted avg 99.89 99.89 99.89 764927
Chinese
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.47 97.46 98.45 414383
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 0.00 0.00 0.00 0
? (label_id: 4) 0.00 0.00 0.00 0
? (label_id: 5) 81.41 85.80 83.55 1444
, (label_id: 6) 74.93 92.79 82.91 34094
。 (label_id: 7) 96.35 96.86 96.60 30668
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 97.05 97.05 97.05 480589
macro avg 88.04 93.23 90.38 480589
weighted avg 97.47 97.05 97.19 480589
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 94.82 93.97 94.39 2786
UPPER (label_id: 1) 79.23 81.76 80.48 784
-------------------
micro avg 91.29 91.29 91.29 3570
macro avg 87.03 87.87 87.44 3570
weighted avg 91.40 91.29 91.34 3570
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.99 99.98 99.98 450589
FULLSTOP (label_id: 1) 99.75 99.81 99.78 33000
-------------------
micro avg 99.97 99.97 99.97 483589
macro avg 99.87 99.89 99.88 483589
weighted avg 99.97 99.97 99.97 483589
Japanese
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.32 95.84 97.55 387103
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 0.00 0.00 0.00 0
? (label_id: 4) 0.00 0.00 0.00 0
? (label_id: 5) 75.12 68.14 71.46 1378
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 93.30 97.44 95.33 31110
、 (label_id: 8) 53.91 87.52 66.72 17710
・ (label_id: 9) 29.33 64.60 40.35 1048
। (label_id: 10) 0.00 0.00 0.00 0
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 95.46 95.46 95.46 438349
macro avg 70.20 82.71 74.28 438349
weighted avg 96.81 95.46 95.93 438349
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 92.64 92.67 92.65 4036
UPPER (label_id: 1) 80.75 80.70 80.73 1539
-------------------
micro avg 89.36 89.36 89.36 5575
macro avg 86.70 86.68 86.69 5575
weighted avg 89.36 89.36 89.36 5575
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 99.98 99.95 99.97 408349
FULLSTOP (label_id: 1) 99.36 99.78 99.57 33000
-------------------
micro avg 99.94 99.94 99.94 441349
macro avg 99.67 99.86 99.77 441349
weighted avg 99.94 99.94 99.94 441349
Hindi
punct_post test report:
label precision recall f1 support
<NULL> (label_id: 0) 99.73 99.47 99.60 533761
<ACRONYM> (label_id: 1) 0.00 0.00 0.00 0
. (label_id: 2) 0.00 0.00 0.00 0
, (label_id: 3) 70.69 76.48 73.47 7713
? (label_id: 4) 65.41 74.75 69.77 301
? (label_id: 5) 0.00 0.00 0.00 0
, (label_id: 6) 0.00 0.00 0.00 0
。 (label_id: 7) 0.00 0.00 0.00 0
、 (label_id: 8) 0.00 0.00 0.00 0
・ (label_id: 9) 0.00 0.00 0.00 0
। (label_id: 10) 96.46 98.81 97.62 30641
؟ (label_id: 11) 0.00 0.00 0.00 0
، (label_id: 12) 0.00 0.00 0.00 0
; (label_id: 13) 0.00 0.00 0.00 0
። (label_id: 14) 0.00 0.00 0.00 0
፣ (label_id: 15) 0.00 0.00 0.00 0
፧ (label_id: 16) 0.00 0.00 0.00 0
-------------------
micro avg 99.11 99.11 99.11 572416
macro avg 83.07 87.38 85.11 572416
weighted avg 99.15 99.11 99.13 572416
cap test report:
label precision recall f1 support
LOWER (label_id: 0) 97.46 96.50 96.98 2346
UPPER (label_id: 1) 89.01 91.84 90.40 723
-------------------
micro avg 95.41 95.41 95.41 3069
macro avg 93.23 94.17 93.69 3069
weighted avg 95.47 95.41 95.43 3069
seg test report:
label precision recall f1 support
NOSTOP (label_id: 0) 100.00 100.00 100.00 542437
FULLSTOP (label_id: 1) 99.92 99.97 99.95 32979
-------------------
micro avg 99.99 99.99 99.99 575416
macro avg 99.96 99.98 99.97 575416
weighted avg 99.99 99.99 99.99 575416