from typing import Any, Dict import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig # from peft import PeftConfig, PeftModel class EndpointHandler: def __init__(self, path=""): # load model and processor from path self.tokenizer = AutoTokenizer.from_pretrained(path) # try: # config = AutoConfig.from_pretrained(path) model = AutoModelForCausalLM.from_pretrained( path, # return_dict=True, # load_in_8bit=True, device_map="auto", torch_dtype=torch.float16, # trust_remote_code=True, ) # model.resize_token_embeddings(len(self.tokenizer)) # model = PeftModel.from_pretrained(model, path) # except Exception: # model = AutoModelForCausalLM.from_pretrained( # path, device_map="auto", load_in_8bit=True, torch_dtype=torch.float16, trust_remote_code=True # ) self.model = model self.device = "cuda" if torch.cuda.is_available() else "cpu" def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: # process input inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # preprocess inputs = self.tokenizer(f"User: {inputs}\n\n", return_tensors="pt") # pass inputs with all kwargs in data if parameters is not None: outputs = self.model.generate(**inputs.to(self.device), max_new_tokens=880, **parameters) else: outputs = self.model.generate(**inputs.to(self.device), max_new_tokens=880) # postprocess the prediction prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return [{"generated_text": prediction}]