Upload handler.py
Browse files- handler.py +9 -9
handler.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
from typing import Any, Dict
|
2 |
|
3 |
import torch
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
-
|
7 |
|
8 |
|
9 |
class EndpointHandler:
|
@@ -11,17 +11,17 @@ class EndpointHandler:
|
|
11 |
# load model and processor from path
|
12 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
13 |
# try:
|
14 |
-
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
-
|
17 |
# return_dict=True,
|
18 |
# load_in_8bit=True,
|
19 |
device_map="auto",
|
20 |
torch_dtype=torch.float16,
|
21 |
-
|
22 |
)
|
23 |
# model.resize_token_embeddings(len(self.tokenizer))
|
24 |
-
|
25 |
# except Exception:
|
26 |
# model = AutoModelForCausalLM.from_pretrained(
|
27 |
# path, device_map="auto", load_in_8bit=True, torch_dtype=torch.float16, trust_remote_code=True
|
@@ -35,13 +35,13 @@ class EndpointHandler:
|
|
35 |
parameters = data.pop("parameters", None)
|
36 |
|
37 |
# preprocess
|
38 |
-
inputs = self.tokenizer(
|
39 |
|
40 |
# pass inputs with all kwargs in data
|
41 |
if parameters is not None:
|
42 |
-
outputs = self.model.generate(**inputs
|
43 |
else:
|
44 |
-
outputs = self.model.generate(**inputs
|
45 |
|
46 |
# postprocess the prediction
|
47 |
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
1 |
from typing import Any, Dict
|
2 |
|
3 |
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
|
6 |
+
from peft import PeftConfig, PeftModel
|
7 |
|
8 |
|
9 |
class EndpointHandler:
|
|
|
11 |
# load model and processor from path
|
12 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
13 |
# try:
|
14 |
+
config = PeftConfig.from_pretrained(path)
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
config.base_model_name_or_path,
|
17 |
# return_dict=True,
|
18 |
# load_in_8bit=True,
|
19 |
device_map="auto",
|
20 |
torch_dtype=torch.float16,
|
21 |
+
trust_remote_code=True,
|
22 |
)
|
23 |
# model.resize_token_embeddings(len(self.tokenizer))
|
24 |
+
model = PeftModel.from_pretrained(model, path)
|
25 |
# except Exception:
|
26 |
# model = AutoModelForCausalLM.from_pretrained(
|
27 |
# path, device_map="auto", load_in_8bit=True, torch_dtype=torch.float16, trust_remote_code=True
|
|
|
35 |
parameters = data.pop("parameters", None)
|
36 |
|
37 |
# preprocess
|
38 |
+
inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device)
|
39 |
|
40 |
# pass inputs with all kwargs in data
|
41 |
if parameters is not None:
|
42 |
+
outputs = self.model.generate(**inputs, max_new_tokens=880, **parameters)
|
43 |
else:
|
44 |
+
outputs = self.model.generate(**inputs, max_new_tokens=880)
|
45 |
|
46 |
# postprocess the prediction
|
47 |
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|