File size: 1,806 Bytes
65520f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
from typing import Any, Dict
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
# from peft import PeftConfig, PeftModel
class EndpointHandler:
def __init__(self, path=""):
# load model and processor from path
self.tokenizer = AutoTokenizer.from_pretrained(path)
# try:
# config = AutoConfig.from_pretrained(path)
model = AutoModelForCausalLM.from_pretrained(
path,
# return_dict=True,
# load_in_8bit=True,
device_map="auto",
torch_dtype=torch.float16,
# trust_remote_code=True,
)
# model.resize_token_embeddings(len(self.tokenizer))
# model = PeftModel.from_pretrained(model, path)
# except Exception:
# model = AutoModelForCausalLM.from_pretrained(
# path, device_map="auto", load_in_8bit=True, torch_dtype=torch.float16, trust_remote_code=True
# )
self.model = model
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
# process input
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
# preprocess
inputs = self.tokenizer(f"User: {inputs}\n\n", return_tensors="pt")
# pass inputs with all kwargs in data
if parameters is not None:
outputs = self.model.generate(**inputs.to(self.device), max_new_tokens=880, **parameters)
else:
outputs = self.model.generate(**inputs.to(self.device), max_new_tokens=880)
# postprocess the prediction
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
return [{"generated_text": prediction}] |