Zongxia commited on
Commit
b380cb9
β€’
1 Parent(s): ef40418

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -12
README.md CHANGED
@@ -27,6 +27,19 @@ match_result = em_match(reference_answer, candidate_answer)
27
  print("Exact Match: ", match_result)
28
  ```
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  #### F1 Score
31
  ```python
32
  from qa_metrics.f1 import f1_match,f1_score_with_precision_recall
@@ -49,18 +62,6 @@ match_result = cfm.cf_match(reference_answer, candidate_answer, question)
49
  print("Score: %s; CF Match: %s" % (scores, match_result))
50
  ```
51
 
52
- #### Transformer Match
53
- Our fine-tuned BERT model is on πŸ€— [Huggingface](https://huggingface.co/Zongxia/answer_equivalence_bert?text=The+goal+of+life+is+%5BMASK%5D.). Our Package also supports downloading and matching directly. More Matching transformer models will be available πŸ”₯πŸ”₯πŸ”₯
54
-
55
- ```python
56
- from qa_metrics.transformerMatcher import TransformerMatcher
57
-
58
- question = "who will take the throne after the queen dies"
59
- tm = TransformerMatcher("bert")
60
- scores = tm.get_scores(reference_answer, candidate_answer, question)
61
- match_result = tm.transformer_match(reference_answer, candidate_answer, question)
62
- print("Score: %s; CF Match: %s" % (scores, match_result))
63
- ```
64
 
65
  ## Datasets
66
  Our Training Dataset is adapted and augmented from [Bulian et al](https://github.com/google-research-datasets/answer-equivalence-dataset). Our [dataset repo](https://github.com/zli12321/Answer_Equivalence_Dataset.git) includes the augmented training set and QA evaluation testing sets discussed in our paper.
 
27
  print("Exact Match: ", match_result)
28
  ```
29
 
30
+ #### Transformer Match
31
+ Our fine-tuned BERT model is repository. Our Package also supports downloading and matching directly. More Matching transformer models will be available πŸ”₯πŸ”₯πŸ”₯
32
+
33
+ ```python
34
+ from qa_metrics.transformerMatcher import TransformerMatcher
35
+
36
+ question = "who will take the throne after the queen dies"
37
+ tm = TransformerMatcher("bert")
38
+ scores = tm.get_scores(reference_answer, candidate_answer, question)
39
+ match_result = tm.transformer_match(reference_answer, candidate_answer, question)
40
+ print("Score: %s; CF Match: %s" % (scores, match_result))
41
+ ```
42
+
43
  #### F1 Score
44
  ```python
45
  from qa_metrics.f1 import f1_match,f1_score_with_precision_recall
 
62
  print("Score: %s; CF Match: %s" % (scores, match_result))
63
  ```
64
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
  ## Datasets
67
  Our Training Dataset is adapted and augmented from [Bulian et al](https://github.com/google-research-datasets/answer-equivalence-dataset). Our [dataset repo](https://github.com/zli12321/Answer_Equivalence_Dataset.git) includes the augmented training set and QA evaluation testing sets discussed in our paper.