File size: 1,892 Bytes
1a40172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
base_model: google/pegasus-x-large
tags:
- summarization
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: pegasus-x-large-finetuned-samsum1000-1
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: samsum
      type: samsum
      config: samsum
      split: validation
      args: samsum
    metrics:
    - name: Rouge1
      type: rouge
      value: 47.1327
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pegasus-x-large-finetuned-samsum1000-1

This model is a fine-tuned version of [google/pegasus-x-large](https://huggingface.co/google/pegasus-x-large) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4703
- Rouge1: 47.1327
- Rouge2: 22.7028
- Rougel: 39.9245
- Rougelsum: 43.0906

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 1.7687        | 1.0   | 500  | 1.4703          | 47.1327 | 22.7028 | 39.9245 | 43.0906   |


### Framework versions

- Transformers 4.37.1
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1