File size: 1,629 Bytes
cddf873
30af809
f78f543
30af809
 
81bf6f5
 
f92b25c
f78f543
f92b25c
cddf873
 
f92b25c
 
cddf873
f78f543
cddf873
f78f543
f92b25c
f78f543
 
cddf873
f92b25c
cddf873
f92b25c
cddf873
f92b25c
cddf873
f92b25c
cddf873
f92b25c
cddf873
f92b25c
cddf873
f92b25c
cddf873
f92b25c
cddf873
f92b25c
 
f78f543
f92b25c
 
 
 
 
f78f543
f92b25c
cddf873
f92b25c
cddf873
f92b25c
 
f78f543
 
 
 
cddf873
 
f92b25c
cddf873
f92b25c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: 240615-wav2vec2-ASR-Chinese
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 240615-wav2vec2-ASR-Chinese

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2831
- Wer: 0.2399

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 5
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 6.25  | 100  | 1.2831          | 0.2399 |
| No log        | 12.5  | 200  | 1.2996          | 0.2657 |
| No log        | 18.75 | 300  | 1.3705          | 0.3092 |
| No log        | 25.0  | 400  | 1.3119          | 0.3269 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1