File size: 1,629 Bytes
93a4ffa
e01f660
7e49100
e01f660
 
7e49100
 
e01f660
 
 
93a4ffa
 
e01f660
 
93a4ffa
e01f660
93a4ffa
e01f660
 
 
 
93a4ffa
e01f660
93a4ffa
e01f660
93a4ffa
e01f660
93a4ffa
e01f660
93a4ffa
e01f660
93a4ffa
e01f660
93a4ffa
e01f660
93a4ffa
e01f660
93a4ffa
e01f660
 
 
 
 
 
 
 
 
 
93a4ffa
e01f660
93a4ffa
e01f660
 
 
 
 
 
93a4ffa
 
e01f660
93a4ffa
e01f660
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: facebook/wav2vec2-base
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: 240615-wav2vec2-ASR-English
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 240615-wav2vec2-ASR-English

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9291
- Wer: 0.1578

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 5
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 6.25  | 100  | 0.8718          | 0.1610 |
| No log        | 12.5  | 200  | 0.9291          | 0.1578 |
| No log        | 18.75 | 300  | 0.8387          | 0.1755 |
| No log        | 25.0  | 400  | 0.8754          | 0.1675 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1