File size: 1,629 Bytes
2859afe
bd4c6bf
df7f9c6
bd4c6bf
 
df7f9c6
 
f6f7b23
df7f9c6
f6f7b23
2859afe
 
f6f7b23
 
2859afe
df7f9c6
2859afe
df7f9c6
f6f7b23
df7f9c6
 
2859afe
f6f7b23
2859afe
f6f7b23
2859afe
f6f7b23
2859afe
f6f7b23
2859afe
f6f7b23
2859afe
f6f7b23
2859afe
f6f7b23
2859afe
f6f7b23
2859afe
f6f7b23
 
df7f9c6
f6f7b23
 
 
 
 
 
 
2859afe
f6f7b23
2859afe
f6f7b23
 
df7f9c6
 
 
 
2859afe
 
f6f7b23
2859afe
f6f7b23
 
8ea8ed2
f6f7b23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: 240615-wav2vec2-ASR-Chinese
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 240615-wav2vec2-ASR-Chinese

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2831
- Wer: 0.2399

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 5
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 6.25  | 100  | 1.2831          | 0.2399 |
| No log        | 12.5  | 200  | 1.2996          | 0.2657 |
| No log        | 18.75 | 300  | 1.3705          | 0.3092 |
| No log        | 25.0  | 400  | 1.3119          | 0.3269 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1