File size: 1,629 Bytes
2859afe bd4c6bf df7f9c6 bd4c6bf df7f9c6 f6f7b23 df7f9c6 f6f7b23 2859afe f6f7b23 2859afe df7f9c6 2859afe df7f9c6 f6f7b23 df7f9c6 2859afe f6f7b23 2859afe f6f7b23 2859afe f6f7b23 2859afe f6f7b23 2859afe f6f7b23 2859afe f6f7b23 2859afe f6f7b23 2859afe f6f7b23 2859afe f6f7b23 df7f9c6 f6f7b23 2859afe f6f7b23 2859afe f6f7b23 df7f9c6 2859afe f6f7b23 2859afe f6f7b23 8ea8ed2 f6f7b23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: 240615-wav2vec2-ASR-Chinese
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 240615-wav2vec2-ASR-Chinese
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2831
- Wer: 0.2399
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 5
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 6.25 | 100 | 1.2831 | 0.2399 |
| No log | 12.5 | 200 | 1.2996 | 0.2657 |
| No log | 18.75 | 300 | 1.3705 | 0.3092 |
| No log | 25.0 | 400 | 1.3119 | 0.3269 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|