--- license: mit language: - en --- # STRONG Model Card ## Model Information ### Description STRONG is a finetuned LED-based model that can produce a Structure Controllable summarization of long legal opinions obtained from CanLII. You can also find the fine-tuned model without structure information [here](https://huggingface.co/yznlp/STRONG-LED-NoStructure). ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. The input is composed of two parts: 1. Summary Structure Prompt: Concatenate a series of IRC structure labels using " | " as a separator. (labels include Non_IRC, Issue, Reason, Conclusion). 2. After the special token " ==> ", enter the text of the legal opinion. #### Running the model on a CPU ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384") model = AutoModelForCausalLM.from_pretrained("yznlp/STRONG-LED") input_text = "Non_IRC | Issue | Conclusion ==> {Legal Case Content}" input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids, max_length=256, num_beams=4, length_penalty=2.0) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384") model = AutoModelForCausalLM.from_pretrained("yznlp/STRONG-LED", device_map="auto") input_text = "Non_IRC | Issue | Conclusion ==> {Legal Case Content}" input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids, max_length=256, num_beams=4, length_penalty=2.0) print(tokenizer.decode(outputs[0])) ``` ### Paper Citation If you find our model useful, please cite ``` @inproceedings{zhong-litman-2023-strong, title = "{STRONG} {--} Structure Controllable Legal Opinion Summary Generation", author = "Zhong, Yang and Litman, Diane", editor = "Park, Jong C. and Arase, Yuki and Hu, Baotian and Lu, Wei and Wijaya, Derry and Purwarianti, Ayu and Krisnadhi, Adila Alfa", booktitle = "Findings of the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings)", month = nov, year = "2023", address = "Nusa Dua, Bali", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.findings-ijcnlp.37", pages = "431--448", } ```