upload readme
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- image-classification
|
5 |
+
- vision
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- food101
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: swin-food101-jpqd
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Image Classification
|
16 |
+
type: image-classification
|
17 |
+
dataset:
|
18 |
+
name: food101
|
19 |
+
type: food101
|
20 |
+
config: default
|
21 |
+
split: validation
|
22 |
+
args: default
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.9055049504950495
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# swin-food101-jpqd
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.3497
|
37 |
+
- Accuracy: 0.9055
|
38 |
+
|
39 |
+
This model is quantized. Structured sparsity in transformer linear layers: 40%.
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 5e-05
|
59 |
+
- train_batch_size: 16
|
60 |
+
- eval_batch_size: 128
|
61 |
+
- seed: 42
|
62 |
+
- gradient_accumulation_steps: 4
|
63 |
+
- total_train_batch_size: 64
|
64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- lr_scheduler_warmup_ratio: 0.1
|
67 |
+
- num_epochs: 10.0
|
68 |
+
|
69 |
+
### Training results
|
70 |
+
|
71 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
72 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
73 |
+
| 2.2676 | 0.42 | 500 | 2.1087 | 0.7947 |
|
74 |
+
| 0.6823 | 0.84 | 1000 | 0.5127 | 0.8818 |
|
75 |
+
| 0.816 | 1.27 | 1500 | 0.3944 | 0.8954 |
|
76 |
+
| 0.5272 | 1.69 | 2000 | 0.3310 | 0.9050 |
|
77 |
+
| 12.263 | 2.11 | 2500 | 12.0040 | 0.9057 |
|
78 |
+
| 48.9519 | 2.54 | 3000 | 48.4500 | 0.8597 |
|
79 |
+
| 75.576 | 2.96 | 3500 | 75.5765 | 0.6951 |
|
80 |
+
| 93.7523 | 3.38 | 4000 | 93.3753 | 0.5992 |
|
81 |
+
| 103.7155 | 3.8 | 4500 | 103.5301 | 0.5622 |
|
82 |
+
| 107.7993 | 4.23 | 5000 | 108.0881 | 0.5636 |
|
83 |
+
| 109.6831 | 4.65 | 5500 | 109.2205 | 0.5844 |
|
84 |
+
| 1.8848 | 5.07 | 6000 | 0.9807 | 0.8315 |
|
85 |
+
| 1.0668 | 5.49 | 6500 | 0.6050 | 0.8740 |
|
86 |
+
| 0.7951 | 5.92 | 7000 | 0.5151 | 0.8838 |
|
87 |
+
| 0.7402 | 6.34 | 7500 | 0.4843 | 0.8906 |
|
88 |
+
| 0.7319 | 6.76 | 8000 | 0.4494 | 0.8933 |
|
89 |
+
| 0.5683 | 7.19 | 8500 | 0.4378 | 0.8953 |
|
90 |
+
| 0.496 | 7.61 | 9000 | 0.4115 | 0.8981 |
|
91 |
+
| 0.6174 | 8.03 | 9500 | 0.3952 | 0.9005 |
|
92 |
+
| 0.4921 | 8.45 | 10000 | 0.3765 | 0.9026 |
|
93 |
+
| 0.5843 | 8.88 | 10500 | 0.3678 | 0.9035 |
|
94 |
+
| 0.5485 | 9.3 | 11000 | 0.3576 | 0.9039 |
|
95 |
+
| 0.4337 | 9.72 | 11500 | 0.3512 | 0.9057 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.26.0
|
101 |
+
- Pytorch 1.13.1+cu116
|
102 |
+
- Datasets 2.8.0
|
103 |
+
- Tokenizers 0.13.2
|